Activity 3-3 (xx Jul 2022)
3. Assume that x is a non-zero rational number. Prove that if y is irrational, then $x y$ is irrational. (Hint: try proofs by contraposition.)

Activity 3-4
4. Prove that for any positive integer n, n is an odd number if and only if $5 n+6$ is odd.
(Hint: To prove statement P s=> Q, you can prove that $P=>Q$ and $Q=>P$.)

Activity 3-5 (xx Jul 2022)
5. Prove the following statement: If x and y are integers and $x^{2}+y^{2}$ is even, then $x+y$ is even.

Note: When you want to prove this statement: "If x and y are integers and $x^{2}+y^{2}$ are even, then $x+y$ is even. ". You can think of it as: "If x and y are integers, then (if $x^{2}+y^{2}$, then $x+y$ is even)". That is because (P and Q) $=>R$ is equivalent to ($P=>(Q=>R)$). Therefore, in this case, you can start by assuming that x and y are integers.
(Hint: proofs by cases.)

