Activity 5-1 (2 Aug 2022)

1. (MN-ex-1b) Prove that for integer $n \geq 1$,

$$
\sum_{i=1}^{n} i \cdot 2^{i}=(n-1) 2^{n+1}+2
$$

Activity 5-2 (2 Aug 2022)
2. (LPV-2.5.4b) Prove that for any integer $n \geq 1, n^{3}-n$ is a multiple of 6 .

Activity 5-3 (2 Aug 2022)
3. (R-3.3-ex-37) Show that using only 3-baht and 5-baht coins, one can form a set of coins worth n baht for any integer $n>7$.

Name ID
Activity 5-4 (2 Aug 2021)
4. (R-3.3-ex-37) Show that if n is a positive integer then

$$
\sum_{\left\{a_{1}, a_{2}, \cdots, a_{k}\right\} \subseteq\{1,2, \ldots, n\}} \frac{1}{a_{1} a_{2} \cdots a_{k}}=n
$$

In this problem, the sum is over all non-empty subsets of $\{1,2, \ldots, n\}$.
(Hint: prove by induction. Consider the sum for subsets containing $k+1$ and for subsets not containing $k+1$.)

