Name:

ID:

Activity 9

9.1 Consider vectors over field \mathbb{R} . Let $u_1 = [1, 1, 0, 0]$ and $u_2 = [0, 1, 1, 0]$. Show that the following vectors are in Span $\{u_1, u_2\}$.

- (a) [1, 1, 0, 0]
- (b) [1, 2, 1, 0]
- (c) [1, 0, -1, 0]

9.2 Consider vectors over field GF(2). Let $\boldsymbol{u}_1 = [1, 1, 0, 0], \, \boldsymbol{u}_2 = [0, 1, 1, 0], \, \text{and} \, \boldsymbol{u}_3 = [1, 0, 1, 0].$

- Find Span $\{u_1, u_2, u_3\}$.
- Let $\mathcal{V} = \text{Span} \{ u_1, u_2, u_3 \}$. Find a vector in $GF(2)^4$ which is not in \mathcal{V} .
- What is $\dim \mathcal{V}$?

9.3 Consider vectors $v_1, v_2, \ldots, v_{k-1}$ over \mathbb{R} . Let $v_k = v_1 + v_2 + \ldots + v_{k-1}$. Show, from the definition of linear independence, that the set of vectors $\{v_1, v_2, \ldots, v_k\}$ are not linearly independent.

9.4 Consider vectors v_1, v_2, \ldots, v_k over \mathbb{R} . Let $\mathcal{V} = \text{Span}\{v_1, v_2, \ldots, v_k\}$.

Suppose that there exists a non-zero vector $\boldsymbol{u} \in \mathcal{V}$ that can be written as linear combinations of $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k$ in two ways, i.e., there exists $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ and $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{R}$ such that

 $\boldsymbol{u} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \cdots + \alpha_k \boldsymbol{v}_k,$

 $\boldsymbol{u} = \beta_1 \boldsymbol{v}_1 + \beta_2 \boldsymbol{v}_2 + \cdots + \beta_k \boldsymbol{v}_k,$

and also $\alpha_i \neq \beta_i$, for some $1 \leq i \leq k$.

Prove that $\{v_1, v_2, \ldots, v_k\}$ is **not** a basis of \mathcal{V} .

(Notes: In this problem, you must prove this fact from standard definitions. You cannot just use a theorem we proved in class to claim the proof.)