Name:	ID:

Activity 9
9.1 Consider vectors over field \mathbb{R}. Let $\boldsymbol{u}_{1}=[1,1,0,0]$ and $\boldsymbol{u}_{2}=[0,1,1,0]$. Show that the following vectors are in Span $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$.
(a) $[1,1,0,0]$
(b) $[1,2,1,0]$
(c) $[1,0,-1,0]$
9.2 Consider vectors over field $G F(2)$. Let $\boldsymbol{u}_{1}=[1,1,0,0], \boldsymbol{u}_{2}=[0,1,1,0]$, and $\boldsymbol{u}_{3}=[1,0,1,0]$.

- Find $\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$.
- Let $\mathcal{V}=\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$. Find a vector in $G F(2)^{4}$ which is not in \mathcal{V}.
- What is $\operatorname{dim} \mathcal{V}$?
9.3 Consider vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k-1}$ over \mathbb{R}. Let $\boldsymbol{v}_{k}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\ldots+\boldsymbol{v}_{k-1}$. Show, from the definition of linear independence, that the set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ are not linearly independent.
9.4 Consider vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ over \mathbb{R}. Let $\mathcal{V}=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$.

Suppose that there exists a non-zero vector $\boldsymbol{u} \in \mathcal{V}$ that can be written as linear combinations of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ in two ways, i.e., there exists $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{R}$ such that

$$
\begin{aligned}
& \boldsymbol{u}=\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\cdots+\alpha_{k} \boldsymbol{v}_{k}, \\
& \boldsymbol{u}=\beta_{1} \boldsymbol{v}_{1}+\beta_{2} \boldsymbol{v}_{2}+\cdots+\beta_{k} \boldsymbol{v}_{k},
\end{aligned}
$$

and also $\alpha_{i} \neq \beta_{i}$, for some $1 \leq i \leq k$.
Prove that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is not a basis of \mathcal{V}.
(Notes: In this problem, you must prove this fact from standard definitions. You cannot just use a theorem we proved in class to claim the proof.)

