01204211: Exercises 10-1

Notes: To avoid confusion, in your answer, you can write vectors with this notation \vec{u}.

1. In this problem, we will use Gaussian Elimination to solve the following linear system.

$$
\begin{aligned}
x_{1}+3 x_{2}+2 x_{3} & =7 \\
5 x_{1}+10 x_{2}+x_{3} & =8 \\
2 x_{1}-4 x_{2} & -4 x_{3}=9
\end{aligned}
$$

(a) Formulate the linear system in matrix form. Denote the coefficient matrix by A.
(b) Use elimination process to transform A into an upper triangular matrix. Write down every step. (There should be 3 steps.)
Also, for each step $i,(1)$ write down an elementary matrix E_{i} that represents the elimination process that you perform and (2) write down its inverse E_{i}^{-1}.
(c) Call the resulting upper triangular matrix U. Write down, in full, the matrix equation $E_{3} E_{2} E_{1} A=U$.
(d) Use the inverses found in question (b) to write down another equation that shows how to perform matrix multiplication to obtain A from U, i.e., $A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} U$.
(e) Let $L=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}$. Find L and write down the $L U$ decomposition of A, i.e., $A=L U$.
(f) Consider the linear system $A x=b$ when $A=L U$. Write down the starting linear system that we want to solve in the matrix form, but this time replace A with $L U$. Explain briefly what the two matrices U and L "do" to x to obtain b.

