01204211: Exercises 10-1

Notes: To avoid confusion, in your answer, you can write vectors with this notation \vec{u} .

1. In this problem, we will use Gaussian Elimination to solve the following linear system.

x_1	+	$3x_2$	+	$2x_3$	=	7
$5x_1$	+	$10x_{2}$	+	x_3	=	8
$2x_1$	—	$4x_2$	_	$4x_3$	=	9

(a) Formulate the linear system in matrix form. Denote the coefficient matrix by A.

(b) Use elimination process to transform A into an upper triangular matrix. Write down every step. (There should be 3 steps.)
Also, for each step i, (1) write down an elementary matrix E_i that represents the elimination process that you perform and (2) write down its inverse E_i⁻¹.

(c) Call the resulting upper triangular matrix U. Write down, in full, the matrix equation $E_3E_2E_1A = U$.

(d) Use the inverses found in question (b) to write down another equation that shows how to perform matrix multiplication to obtain A from U, i.e., $A = E_1^{-1} E_2^{-1} E_3^{-1} U$.

(e) Let $L = E_1^{-1} E_2^{-1} E_3^{-1}$. Find L and write down the LU decomposition of A, i.e., A = LU.

(f) Consider the linear system Ax = b when A = LU. Write down the starting linear system that we want to solve in the matrix form, but this time replace A with LU. Explain briefly what the two matrices U and L "do" to x to obtain b.

		$\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$
--	--	---