Name: ID:
11.1 (LPV-6.1.3) Prove that if $a \mid b$ and $a \mid c$, then $a \mid b+c$ and $a \mid b-c$.
11.2 (LPV-6.10.3) Prove that if $c \neq 0$ and $a c \mid b c$ then $a \mid b$.
11.3 (LPV-6.10.7) Prove that if $a>3$, then $a, a+2$, and $a+4$ cannot be all prime.
11.4 (LPV-6.3.3) Suppose that a and b are integers and $a \mid b$. Suppose that p is prime and $p \mid b$, but $p \nmid a$. Prove that $p \mid(b / a)$.

Name:	ID:

11.5 Solve for integer x in equation $10 x+3 \equiv 0(\bmod 71143)$.
11.6 In this problem, we will perform all calculation modulo 11. Let x and y denote the last 2 digits of your student id. (E.g., if you ID is 1234567890 , then $x=9, y=0$.) Find the values a, b_{i} that satisfy these equations.

$$
\begin{array}{rlr}
10 a+5 b & \equiv x & (\bmod 11) \\
7 a+2 b & \equiv y & (\bmod 11)
\end{array}
$$

