1. [Proof by cases] Prove the following statement: If x and y are integer and $x^{2}+y^{2}$ is even, then $x+y$ is even. Note: When you want to prove this statement: "If x and y are integers and $x^{2}+y^{2}$ are even, then $x+y$ is even. ". You can think of it as: "If x and y are integers, then (if $x^{2}+y^{2}$, then $x+y$ is even)". That is because $(P$ and $Q)=>R$ is equivalent to $(P=>(Q=>R)$). Therefore, in this case, you can start by assuming that x and y are integers.
2. (source: LPV) Prove by induction on k that for any integer $k \geq 1$, we have that

$$
1+3+\cdots+(2 k+1)=k^{2}
$$

State the property $P(k)$:
$P(k)$

Basic step: (show that $P(1)$ is true)

Induction step: (assume $P(m)$ and show $P(m+1)$, for any $m>=1$)
State the Induction Hypothesis $P(m)$:

$P(m)$	
State the goal $P(m+1)$	
$P(m+1)$	

