01204211: Exercises 8-1

Notes: To avoid confusion, in your answer, you can write vectors with this notation \vec{u}.

1. Recall our definition of dot products. Consider vectors over field \mathbb{F}. Suppose that $\boldsymbol{u}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ and $\boldsymbol{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. We define $\boldsymbol{u} \cdot \boldsymbol{v}=\sum_{i=1}^{n} u_{i} \times v_{i}$. Using properties of field \mathbb{F}, prove that the dot product is commutative, i.e., prove that $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}$.
2. Authentication scheme. A simple password authentication scheme is not secure against eavesdropping. A more secure scheme is a challenge-response scheme, where the system asks a series of questions the user who has the password should provide correct answers. Consider a simple scheme that works with n-vectors over $G F(2)$. The user has an n-bit vector (n-vector over $G F(2)$) \boldsymbol{p} as a password. The system picks k random n-vectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}$, and for k successive rounds asks the user the following questions.

- For $i=1,2, \ldots, k$, in round i, the server provides \boldsymbol{u}_{i} to the user.
- The user replies with $\boldsymbol{r}_{i}=\boldsymbol{u}_{i} \cdot \boldsymbol{p}$.
- The server checks if the anser \boldsymbol{r}_{i} is in fact the correct answer $\boldsymbol{u}_{i} \cdot \boldsymbol{p}$.

Suppose that Eve, the eavesdroper, sees (in clear text) one correct authentication of Alice, i.e., she sees $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ and $\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{k}$.
(a) Suppose that Eve tries to log in as Alice. Give the condition on the question \boldsymbol{v} from the server that, given the information that she currently has, Eve can answer correctly.
(b) Suppose that Eve would like to figure our Alice's password vector \boldsymbol{p}. Write down a system of linear equations that she has to solve.
3. Span test 1. Consider 3-vectors over \mathbb{R}. Let $\boldsymbol{u}_{1}=[1,0,0], \boldsymbol{u}_{2}=[0,1,0], \boldsymbol{u}_{3}=[0,0,1]$.
(a) Show that $\boldsymbol{v}=[10,13,29] \in \operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$.
(b) Show that in general $\boldsymbol{v}^{\prime}=[a, b, c] \in \operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ for any a, b, c.
4. Span test 2. Consider 3-vectors over \mathbb{R}. Let $\boldsymbol{u}_{1}=[1,0,0], \boldsymbol{u}_{2}=[0,1,0], \boldsymbol{u}_{3}=[0,1,1]$.
(a) Show that $\boldsymbol{v}=[10,13,29] \in \operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$.

Hint: try to find a way to write $[0,0,1]$ as a linear combination of the vectors first.
(b) Show that in general $\boldsymbol{v}^{\prime}=[a, b, c] \in \operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ for any a, b, c.

