01204213: Homework 1

Due: 23pm, 12 Jul 2021.

1. (Siper 1.6) Give state diagrams of finite automata recognizing the following languages. In all parts the alphabet is $\{0,1\}$.
(a) $\{w \mid w$ begins with a 1 and ends with 0$\}$
(b) $\{w \mid w$ contains at least three 1 's $\}$
(c) $\{w \mid w$ starts with 0 and has odd length, or starts with 1 and has even length $\}$
(d) $\{\varepsilon, 0\}$
(e) All strings except the empty string
2. (Sipser 1.12) Let $\{\mathrm{a}, \mathrm{b}\}$ denote the alphabet. Let $D=\{w \mid w$ contains an even number of a's and and odd number of b's and does not contain the substring ab \}. Give a finite automaton with 5 states that recognizes D. (Suggestion: Describe D more simply.)
3. Consider the following finite automata M_{1} and M_{2}.

$M_{1}:$
M_{2} :
(a) What language does M_{1} recognize?
(b) What language does M_{2} recognize?
(c) For $i \in\{1,2\}$, let A_{i} denote the language recognized by M_{i}. Use the construction we discussed in class to construct a finite automaton M that recognizes $A_{1} \cup A_{2}$.
4. Let A_{1} and A_{2} be regular languages. Prove that $A_{1} \cap A_{2}$ is also a regular language.
5. (Sipser 1.36) For any string $w=w_{1} w_{2} \cdots w_{n}$, the reverse of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w_{n} w_{n-1} \cdots w_{2} w_{1}$. For any language A, let $A^{\mathcal{R}}=\left\{w^{\mathcal{R}} \mid w \in A\right\}$. Prove that if A is regular, so is $A^{\mathcal{R}}$.
(Hint: First, try to prove the case when the finite automaton recognizing A has only one accept state. Then, using the result proved in class (the union of regular languages is regular) to prove the required statement.)
