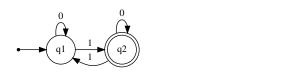
01204213: Homework 1

Due: 23pm, 20 Jul 2022.

- 1. (Siper 1.6) Give state diagrams of finite automata recognizing the following languages. In all parts the alphabet is $\{0, 1\}$.
 - (a) $\{w \mid w \text{ begins with a 1 and ends with 0}\}$
 - (b) $\{w \mid w \text{ contains at least three 1's}\}$
 - (c) $\{w \mid w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length} \}$
 - (d) $\{\varepsilon, 0\}$
 - (e) All strings except the empty string
- 2. (Sipser 1.12) Let $\{a, b\}$ denote the alphabet. Let $D = \{w \mid w \text{ contains an even number of } a's and and odd number of b's and does not contain the substring <math>ab$. Give a finite automaton with 5 states that recognizes D. (Suggestion: Describe D more simply.)
- 3. Consider the following finite automata M_1 and M_2 .



 M_1 :

 M_2 :

- (a) What language does M_1 recognize?
- (b) What language does M_2 recognize?
- (c) For $i \in \{1, 2\}$, let A_i denote the language recognized by M_i . Use the construction we discussed in class to construct a finite automaton M that recognizes $A_1 \cup A_2$.
- 4. Let A_1 and A_2 be regular languages. Prove that $A_1 \cap A_2$ is also a regular language.
- 5. (Sipser 1.36) For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w_n w_{n-1} \cdots w_2 w_1$. For any language A, let $A^{\mathcal{R}} = \{w^{\mathcal{R}} | w \in A\}$. Prove that if A is regular, so is $A^{\mathcal{R}}$.

(Hint: First, try to prove the case when the finite automaton recognizing A has only one accept state. Then, using the result proved in class (the union of regular languages is regular) to prove the required statement.)