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Two basic concepts in OOP are class and object

A class defines the behavior of a new kind of thing

An object is a thing with particular properties
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Define a new class with no behavior

>>> class Empty(object):

...   pass
Create two objects of that class

>>> first = Empty()

>>> second = Empty()

>>> print 'first is', id(first)

35855140

>>> print 'second is', id(second)

35855152
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Every object has its own variables

Create new ones by assigning them values

class Empty(object):

pass

e = Empty() e2 = Empty()

e.value = 123 print e2.value

print e.value AttributeError: 

'Empty'

123 object has no 

attribute

'value'
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Every object has its own variables

Create new ones by assigning them values

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

g = Greeter() g2 = Greeter()

g.hello = 'Bonjour' g2.hello = 

'Salut'

g.greet('Waya') g2.greet('Waya')

Bonjour Waya ! Salut Waya !
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hello

greet

stack heap

g
Greeter

self
name

'Waya'

'Bonjour'
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Every object's names are separate

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

hello = 'Hola'

g = Greeter()

g.hello = 'Bonjour'

g.greet('Waya')

Bonjour Waya !
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Creating objects and then giving them members is

error-prone

Might forget some (especially when making changes)

Any code repeated in two or more places…

Define a constructor for the class

Automatically called as new object is being created

A natural place to customize individual objects

Python uses the special name __init__(self, 

...)
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A better Greeter

class Greeter(object):

def __init__(self, what_to_say):

self.hello = what_to_say

def greet(self, name):

print self.hello, name, '!'
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Why it's better

first = Greeter('Hello')

first.greet('Waya')

Hello Waya !

second = Greeter('Bonjour')

second.greet('Waya')

Bonjour Waya !
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hello

greet

stack heap

second
first
Greeter

'Bonjour'

hello 'Hello'
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A comon mistake

class Greeter(object):

def __init__(self, what_to_say):

hello = what_to_say

def greet(self, name):

print self.hello, name, '!'
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What goes wrong

first = Greeter('Hello')

first.greet('Waya')

Attribute Error: 'Greeter' object has 

no

attribute 'hello'
self.name stores the value in the object

name on its own is a local variable on the stack
class Greeter(object):

def __init__(self, what_to_say)

hello = what_to_say
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Object data is not protected or hidden in Python

first = Greeter('Hello')

first.greet('Waya')

Hello Waya !

first.hello = 'Kaixo'

Kaixo Waya !

Some languages prevent this

All discourage it
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Benefit #1: fail early, fail often

# Programmer thinks rectangles are 

written

# [[x0, x1], [y0, y1]]

>>> field = [[50, 100], [0, 200]]

>>>

# Class knows rectangles are (x0, y0, 

x1, y1)

>>> field = Rectangle(50, 100, 0, 200)

AssertionError: non-positive X extent
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Benefit #2: readability

class Rectangle(object):

...

def area(self):

return (self.x1-self.x0)*(self.y1-

self.y0)

def contains(self, x, y):

return (self.x0 <= x <= self.x1) 

and \

(self.y0 <= y <= self.y1)
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Compare

List of Lists Object

field = [[0, 0], [100, 
100]]

field = Rectangle(0, 0, 100, 
100)

rect_area(field) field.area()

rect_contains(field, 20, 
25) field.contains(20, 25)

Make it even clearer by creating a Point2D class

Then re-defining Rectangle in terms of it
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