
Basics

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

Classes and Objects

Classes and Objects Basics

Two basic concepts in OOP are class and object

Classes and Objects Basics

Two basic concepts in OOP are class and object

A class defines the behavior of a new kind of thing

Classes and Objects Basics

Two basic concepts in OOP are class and object

A class defines the behavior of a new kind of thing

An object is a thing with particular properties

Classes and Objects Basics

Biology Programming

General

Specific

Two basic concepts in OOP are class and object

A class defines the behavior of a new kind of thing

An object is a thing with particular properties

Classes and Objects Basics

Biology Programming

General
Species

canis lupus

Specific
Organism

Waya

Two basic concepts in OOP are class and object

A class defines the behavior of a new kind of thing

An object is a thing with particular properties

Classes and Objects Basics

Biology Programming

General
Species

canis lupus
Class
Vector

Specific
Organism

Waya
Object

velocity

Two basic concepts in OOP are class and object

A class defines the behavior of a new kind of thing

An object is a thing with particular properties

Classes and Objects Basics

Define a new class with no behavior

Classes and Objects Basics

Define a new class with no behavior

>>> class Empty(object):

... pass

Classes and Objects Basics

Define a new class with no behavior

>>> class Empty(object):

... pass
Create two objects of that class

Classes and Objects Basics

Define a new class with no behavior

>>> class Empty(object):

... pass
Create two objects of that class

>>> first = Empty()

>>> second = Empty()

Classes and Objects Basics

Define a new class with no behavior

>>> class Empty(object):

... pass
Create two objects of that class

>>> first = Empty()

>>> second = Empty()

>>> print 'first is', id(first)

35855140

>>> print 'second is', id(second)

35855152

Classes and Objects Basics

Contents of memory

first

second

Empty

Classes and Objects Basics

Contents of memory

first

second

Empty

object

Classes and Objects Basics

Define the class's behavior with methods

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

class Greeter(object):

def greet(self, name):

print 'hello', name, '!'

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

class Greeter(object):

def greet(self, name):

print 'hello', name, '!'

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

class Greeter(object):

def greet(self, name):

print 'hello', name, '!'

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

class Greeter(object):

def greet(self, name):

print 'hello', name, '!'

g = Greeter()

g.greet('Waya')

hello Waya !

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

class Greeter(object):

def greet(self, name):

print 'hello', name, '!'

g = Greeter()

g.greet('Waya')

hello Waya !

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

class Greeter(object):

def greet(self, name):

print 'hello', name, '!'

g = Greeter()

g.greet('Waya')

hello Waya !

Classes and Objects Basics

Define the class's behavior with methods

A function defined inside a class…

…that is called for an object of that class

class Greeter(object):

def greet(self, name):

print 'hello', name, '!'

g = Greeter()

g.greet('Waya')

hello Waya !

Classes and Objects Basics

Contents of memory

greet

stack heap

g
Greeter

Classes and Objects Basics

Contents of memory

greet

stack heap

g
Greeter

self
name

'Waya'

Classes and Objects Basics

Every object has its own variables

Classes and Objects Basics

Every object has its own variables members

Classes and Objects Basics

Every object has its own variables

Create new ones by assigning them values

Classes and Objects Basics

Every object has its own variables

Create new ones by assigning them values

class Empty(object):

pass

e = Empty()

e.value = 123

print e.value

123

Classes and Objects Basics

Every object has its own variables

Create new ones by assigning them values

class Empty(object):

pass

e = Empty() e2 = Empty()

e.value = 123 print e2.value

print e.value AttributeError:

'Empty'

123 object has no

attribute

'value'

Classes and Objects Basics

The values of member variables customize objects

Classes and Objects Basics

The values of member variables customize objects

Use them in methods

Classes and Objects Basics

The values of member variables customize objects

Use them in methods

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

Classes and Objects Basics

The values of member variables customize objects

Use them in methods

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

Classes and Objects Basics

Every object has its own variables

Create new ones by assigning them values

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

g = Greeter()

Classes and Objects Basics

Every object has its own variables

Create new ones by assigning them values

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

g = Greeter()

g.hello = 'Bonjour'

Classes and Objects Basics

Every object has its own variables

Create new ones by assigning them values

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

g = Greeter()

g.hello = 'Bonjour'

g.greet('Waya')

Bonjour Waya !

Classes and Objects Basics

Every object has its own variables

Create new ones by assigning them values

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

g = Greeter() g2 = Greeter()

g.hello = 'Bonjour' g2.hello =

'Salut'

g.greet('Waya') g2.greet('Waya')

Bonjour Waya ! Salut Waya !

Classes and Objects Basics

Contents of memory

hello

greet

stack heap

g
Greeter

'Bonjour'

Classes and Objects Basics

Contents of memory

hello

greet

stack heap

g
Greeter

self
name

'Waya'

'Bonjour'

Classes and Objects Basics

Every object's names are separate

Classes and Objects Basics

Every object's names are separate

class Greeter(object):

def greet(self, name):

print self.hello, name, '!'

hello = 'Hola'

g = Greeter()

g.hello = 'Bonjour'

g.greet('Waya')

Bonjour Waya !

Classes and Objects Basics

Creating objects and then giving them members is

error-prone

Classes and Objects Basics

Creating objects and then giving them members is

error-prone

Might forget some (especially when making changes)

Classes and Objects Basics

Creating objects and then giving them members is

error-prone

Might forget some (especially when making changes)

Any code repeated in two or more places…

Classes and Objects Basics

Creating objects and then giving them members is

error-prone

Might forget some (especially when making changes)

Any code repeated in two or more places…

Define a constructor for the class

Classes and Objects Basics

Creating objects and then giving them members is

error-prone

Might forget some (especially when making changes)

Any code repeated in two or more places…

Define a constructor for the class

Automatically called as new object is being created

Classes and Objects Basics

Creating objects and then giving them members is

error-prone

Might forget some (especially when making changes)

Any code repeated in two or more places…

Define a constructor for the class

Automatically called as new object is being created

A natural place to customize individual objects

Classes and Objects Basics

Creating objects and then giving them members is

error-prone

Might forget some (especially when making changes)

Any code repeated in two or more places…

Define a constructor for the class

Automatically called as new object is being created

A natural place to customize individual objects

Python uses the special name __init__(self,

...)

Classes and Objects Basics

A better Greeter

class Greeter(object):

def __init__(self, what_to_say):

self.hello = what_to_say

def greet(self, name):

print self.hello, name, '!'

Classes and Objects Basics

Why it's better

first = Greeter('Hello')

first.greet('Waya')

Hello Waya !

Classes and Objects Basics

Why it's better

first = Greeter('Hello')

first.greet('Waya')

Hello Waya !

second = Greeter('Bonjour')

second.greet('Waya')

Bonjour Waya !

Classes and Objects Basics

Contents of memory

hello

greet

stack heap

second
first
Greeter

'Bonjour'

hello 'Hello'

Classes and Objects Basics

A comon mistake

class Greeter(object):

def __init__(self, what_to_say):

hello = what_to_say

def greet(self, name):

print self.hello, name, '!'

Classes and Objects Basics

What goes wrong

first = Greeter('Hello')

Classes and Objects Basics

What goes wrong

first = Greeter('Hello')

first.greet('Waya')

Attribute Error: 'Greeter' object has

no

attribute 'hello'

Classes and Objects Basics

What goes wrong

first = Greeter('Hello')

first.greet('Waya')

Attribute Error: 'Greeter' object has

no

attribute 'hello'
self.name stores the value in the object

Classes and Objects Basics

What goes wrong

first = Greeter('Hello')

first.greet('Waya')

Attribute Error: 'Greeter' object has

no

attribute 'hello'
self.name stores the value in the object

name on its own is a local variable on the stack

Classes and Objects Basics

What goes wrong

first = Greeter('Hello')

first.greet('Waya')

Attribute Error: 'Greeter' object has

no

attribute 'hello'
self.name stores the value in the object

name on its own is a local variable on the stack
class Greeter(object):

def __init__(self, what_to_say)

hello = what_to_say

Classes and Objects Basics

Object data is not protected or hidden in Python

Classes and Objects Basics

Object data is not protected or hidden in Python

first = Greeter('Hello')

first.greet('Waya')

Hello Waya !

first.hello = 'Kaixo'

Kaixo Waya !

Classes and Objects Basics

Object data is not protected or hidden in Python

first = Greeter('Hello')

first.greet('Waya')

Hello Waya !

first.hello = 'Kaixo'

Kaixo Waya !

Some languages prevent this

Classes and Objects Basics

Object data is not protected or hidden in Python

first = Greeter('Hello')

first.greet('Waya')

Hello Waya !

first.hello = 'Kaixo'

Kaixo Waya !

Some languages prevent this

All discourage it

Classes and Objects Basics

A more practical example

class Rectangle(object):

def __init__(self, x0, y0, x1, y1):

assert x0 < x1, 'Non-positive X

extent'

assert y0 < y1, 'Non-positive Y

extent'

self.x0 = x0

self.y0 = y0

self.x1 = x1

self.y1 = y1

Classes and Objects Basics

A more practical example

class Rectangle(object):

def __init__(self, x0, y0, x1, y1):

assert x0 < x1, 'Non-positive X

extent'

assert y0 < y1, 'Non-positive Y

extent'

self.x0 = x0

self.y0 = y0

self.x1 = x1

self.y1 = y1

Classes and Objects Basics

Benefit #1: fail early, fail often

Classes and Objects Basics

Benefit #1: fail early, fail often

Programmer thinks rectangles are

written

[[x0, x1], [y0, y1]]

>>> field = [[50, 100], [0, 200]]

Classes and Objects Basics

Benefit #1: fail early, fail often

Programmer thinks rectangles are

written

[[x0, x1], [y0, y1]]

>>> field = [[50, 100], [0, 200]]

>>>

Class knows rectangles are (x0, y0,

x1, y1)

>>> field = Rectangle(50, 100, 0, 200)

AssertionError: non-positive X extent

Classes and Objects Basics

Benefit #2: readability

class Rectangle(object):

...

def area(self):

return (self.x1-self.x0)*(self.y1-

self.y0)

def contains(self, x, y):

return (self.x0 <= x <= self.x1)

and \

(self.y0 <= y <= self.y1)

Classes and Objects Basics

Compare

List of Lists Object

field = [[0, 0], [100,
100]]

field = Rectangle(0, 0, 100,
100)

rect_area(field) field.area()

rect_contains(field, 20,
25) field.contains(20, 25)

Classes and Objects Basics

Compare

List of Lists Object

field = [[0, 0], [100,
100]]

field = Rectangle(0, 0, 100,
100)

rect_area(field) field.area()

rect_contains(field, 20,
25) field.contains(20, 25)

Make it even clearer by creating a Point2D class

Classes and Objects Basics

Compare

List of Lists Object

field = [[0, 0], [100,
100]]

field = Rectangle(0, 0, 100,
100)

rect_area(field) field.area()

rect_contains(field, 20,
25) field.contains(20, 25)

Make it even clearer by creating a Point2D class

Then re-defining Rectangle in terms of it

January 2011

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

created by

Greg Wilson

