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Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions
hide the details

make one thing act like another

Functions turn many steps into one (logical) step

Libraries group functions to make them manageable

Classes and objects combine functions and data

And, if used properly, do much more as well
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Simple simulation of aquarium containing

plants snails fish

don't move crawl in 2D swim in 3D

photosynthesize scavenge hunt

Algorithm is simple

Program is more complicated

for t in
range(timesteps):
move(world, 
everything)
eat(world, 
everything)
show(world, 
everything)
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def move(world, everything):
for thing in everything:
if thing[0] == 'plant':
pass # plants don't move

elif thing[0] == 'snail':
move_snail(snail)

elif thing[0] == 'fish':
move_fish(fish)
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def move(world, everything):
for thing in everything:
if thing[0] == 'plant':
pass # plants don't move

elif thing[0] == 'snail':
move_snail(snail)

elif thing[0] == 'fish':
move_fish(fish)

So far, so good
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def eat(world, everything):
for thing in everything:
if thing[0] == 'plant':
photosynthesize(world, plant)

elif thing[0] == 'snail':
scavenge(world, snail)

elif thing[0] == 'fish':
prey = hunt(world, everything, 

thing)
if prey != None:
devour(world, everything, 

thing, prey)
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def eat(world, everything):
for thing in everything:
if thing[0] == 'plant':
photosynthesize(world, plant)

elif thing[0] == 'snail':
scavenge(world, snail)

elif thing[0] == 'fish':
prey = hunt(world, everything, 

thing)
if prey != None:
devour(world, everything, 

thing, prey)
Hmm…
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def show(world, everything):
show_world(world)
for thing in everything:
if thing[0] == 'plant':
show_plant(plant)

elif thing[0] == 'snail':
show_snail(snail)

elif thing[0] == 'fish':
show_fish_fish)
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def show(world, everything):
show_world(world)
for thing in everything:
if thing[0] == 'plant':
show_plant(plant)

elif thing[0] == 'snail':
show_snail(snail)

elif thing[0] == 'fish':
show_fish_fish)

This is starting to look familiar…
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Pessimist: code that's repeated in two or more

places will eventually be wrong in at least one

To add starfish, we have to modify three functions

remember to

What about fish that eat plants? Or scavenge?

Optimist: every pattern in a program is an

opportunity to shorten that program
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Wouldn't this be simpler?

Easier to understand (after some practice)

Much easier to add new kinds of things

for thing in everything:
thing.move()
prey = thing.eat(everything)
if prey:
thing.devour(prey)
everything.remove(prey)
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Nothing is free

Simple programs become slightly more complex

And too much abstraction creates as big a mental

burden as too little

Degree of Abstraction
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Putting steps together
to get big picture

Tracing steps to figure out
what actually happens
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