
Introduction

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

Classes and Objects



Classes and Objects Introduction

Computer science is the study of algorithms



Classes and Objects Introduction

Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions



Classes and Objects Introduction

Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions
hide the details



Classes and Objects Introduction

Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions
hide the details

make one thing act like another



Classes and Objects Introduction

Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions
hide the details

make one thing act like another

Functions turn many steps into one (logical) step



Classes and Objects Introduction

Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions
hide the details

make one thing act like another

Functions turn many steps into one (logical) step

Libraries group functions to make them manageable



Classes and Objects Introduction

Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions
hide the details

make one thing act like another

Functions turn many steps into one (logical) step

Libraries group functions to make them manageable

Classes and objects combine functions and data



Classes and Objects Introduction

Computer science is the study of algorithms

Computer programming is about creating and

composing abstractions
hide the details

make one thing act like another

Functions turn many steps into one (logical) step

Libraries group functions to make them manageable

Classes and objects combine functions and data

And, if used properly, do much more as well



Classes and Objects Introduction

Simple simulation of aquarium containing



Classes and Objects Introduction

Simple simulation of aquarium containing

plants



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails fish



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails fish

don't move

photosynthesize



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails fish

don't move crawl in 2D

photosynthesize scavenge



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails fish

don't move crawl in 2D swim in 3D

photosynthesize scavenge hunt



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails fish

don't move crawl in 2D swim in 3D

photosynthesize scavenge hunt

Algorithm is simple



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails fish

don't move crawl in 2D swim in 3D

photosynthesize scavenge hunt

Algorithm is simple for t in
range(timesteps):
move(world, 
everything)
eat(world, 
everything)
show(world, 
everything)



Classes and Objects Introduction

Simple simulation of aquarium containing

plants snails fish

don't move crawl in 2D swim in 3D

photosynthesize scavenge hunt

Algorithm is simple

Program is more complicated

for t in
range(timesteps):
move(world, 
everything)
eat(world, 
everything)
show(world, 
everything)



Classes and Objects Introduction

def move(world, everything):
for thing in everything:
if thing[0] == 'plant':
pass # plants don't move

elif thing[0] == 'snail':
move_snail(snail)

elif thing[0] == 'fish':
move_fish(fish)



Classes and Objects Introduction

def move(world, everything):
for thing in everything:
if thing[0] == 'plant':
pass # plants don't move

elif thing[0] == 'snail':
move_snail(snail)

elif thing[0] == 'fish':
move_fish(fish)

So far, so good



Classes and Objects Introduction

def eat(world, everything):
for thing in everything:
if thing[0] == 'plant':
photosynthesize(world, plant)

elif thing[0] == 'snail':
scavenge(world, snail)

elif thing[0] == 'fish':
prey = hunt(world, everything, 

thing)
if prey != None:
devour(world, everything, 

thing, prey)



Classes and Objects Introduction

def eat(world, everything):
for thing in everything:
if thing[0] == 'plant':
photosynthesize(world, plant)

elif thing[0] == 'snail':
scavenge(world, snail)

elif thing[0] == 'fish':
prey = hunt(world, everything, 

thing)
if prey != None:
devour(world, everything, 

thing, prey)
Hmm…



Classes and Objects Introduction

def show(world, everything):
show_world(world)
for thing in everything:
if thing[0] == 'plant':
show_plant(plant)

elif thing[0] == 'snail':
show_snail(snail)

elif thing[0] == 'fish':
show_fish_fish)



Classes and Objects Introduction

def show(world, everything):
show_world(world)
for thing in everything:
if thing[0] == 'plant':
show_plant(plant)

elif thing[0] == 'snail':
show_snail(snail)

elif thing[0] == 'fish':
show_fish_fish)

This is starting to look familiar…



Classes and Objects Introduction

Pessimist: code that's repeated in two or more

places will eventually be wrong in at least one



Classes and Objects Introduction

Pessimist: code that's repeated in two or more

places will eventually be wrong in at least one

To add starfish, we have to modify three functions



Classes and Objects Introduction

Pessimist: code that's repeated in two or more

places will eventually be wrong in at least one

To add starfish, we have to modify three functions

remember to



Classes and Objects Introduction

Pessimist: code that's repeated in two or more

places will eventually be wrong in at least one

To add starfish, we have to modify three functions

remember to

What about fish that eat plants? Or scavenge?



Classes and Objects Introduction

Pessimist: code that's repeated in two or more

places will eventually be wrong in at least one

To add starfish, we have to modify three functions

remember to

What about fish that eat plants? Or scavenge?

Optimist: every pattern in a program is an

opportunity to shorten that program



Classes and Objects Introduction

Wouldn't this be simpler?



Classes and Objects Introduction

for thing in everything:
thing.move()
prey = thing.eat(everything)
if prey:
thing.devour(prey)
everything.remove(prey)

Wouldn't this be simpler?



Classes and Objects Introduction

Wouldn't this be simpler?

Easier to understand (after some practice)

for thing in everything:
thing.move()
prey = thing.eat(everything)
if prey:
thing.devour(prey)
everything.remove(prey)



Classes and Objects Introduction

Wouldn't this be simpler?

Easier to understand (after some practice)

Much easier to add new kinds of things

for thing in everything:
thing.move()
prey = thing.eat(everything)
if prey:
thing.devour(prey)
everything.remove(prey)



Classes and Objects Introduction

Nothing is free



Classes and Objects Introduction

Nothing is free

Simple programs become slightly more complex



Classes and Objects Introduction

Nothing is free

Simple programs become slightly more complex

And too much abstraction creates as big a mental

burden as too little



Classes and Objects Introduction

Nothing is free

Simple programs become slightly more complex

And too much abstraction creates as big a mental

burden as too little

Degree of Abstraction

M
en

ta
l E

ffo
rt 

R
eq

ui
re

d 

Putting steps together
to get big picture



Classes and Objects Introduction

Nothing is free

Simple programs become slightly more complex

And too much abstraction creates as big a mental

burden as too little

Degree of Abstraction

M
en

ta
l E

ffo
rt 

R
eq

ui
re

d 

Putting steps together
to get big picture

Tracing steps to figure out
what actually happens



January 2011

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

created by

Greg Wilson


