Axioms of Probability

- The subject of probability is concerned with *random process*, a process that can have multiple outcomes.
- A *probability space* consists of three components.
 - 1. A sample space Ω of all outcomes of a random process. An element of the sample space is called a simple element.
 - 2. A family of sets \mathcal{F} of allowable events. Each element of \mathcal{F} , called an *event*, is a subset of Ω .
 - 3. A probability function $Pr : \mathcal{F} \to \mathbb{R}$, satisfying the following properties:
 - (a) For any $E \in \mathcal{F}$, we have $0 \leq \Pr(E) \leq 1$.
 - (b) $Pr(\Omega) = 1$.
 - (c) For any finite or countably infinite sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots ,

$$\Pr\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \Pr(E_i)$$

- *Example:* Consider the process of rolling two fair die. We can model the sample space as the set $\{(a,b): 1 \le a, b \le 6\}$. We also have $Pr(\{(a,b)\}) = \frac{1}{36}$ for all (a,b) pairs. Now, let's look at some more interesting events:
 - Pr(sum of rolls are even) $=\frac{18}{36}=\frac{1}{2}.$
 - Pr(the first roll is equal to the second) = $\frac{6}{36} = \frac{1}{6}$.
 - Pr(the first roll is larger than the second) = $\frac{15}{36} = \frac{5}{12}$.
 - Pr(at least one roll equals 4) = $\frac{11}{36}$.
- We will be only interested in *discrete probability space*, the probability space where Ω is finite or countably infinite. In this case, if event $E = \{s_1, s_2, s_3, \dots\}$, we have that

$$\Pr(E) = \Pr(\{s_1\}) + \Pr(\{s_2\}) + \Pr(\{s_3\}) + \cdots$$

A common special case is when Ω is finite, and every simple event has equal probability. In this case, we have that

$$\Pr(E) = \frac{\#(E)}{\#(\Omega)}$$

- Some properties of the probability functions:
 - If $A \subseteq B$, then $\Pr(A) \leq \Pr(B)$.
 - Union bound:

$$\Pr\left(\bigcup_{i=1}^{\infty} E_i\right) \le \sum_{i=1}^{\infty} \Pr(E_i).$$

- Inclusion-exclusion principle:

$$\Pr\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \left(\sum_{\substack{S \subseteq [n] \\ \#(S) = k}} \Pr\left(\bigcap_{i \in S} E_{i}\right)\right).$$

Conditional Probability

• The conditional probability that event A occurs given that event F occurs is

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}.$$

The conditional probability is defined only when $P(B) \neq 0$.

- Conditional probability satisfies all the probability axioms.
 - The probability space Ω maps to B.
 - The set of allowable events \mathcal{F} maps to $\{A \cap B : A \in \mathcal{F}\}$.
 - The probability function Pr(A) maps to Pr(A|B).
- *Example:* You are dealt two cards face down from a shuffled deck of 8 cards consisting of the four queens and four kings from a standard bridge deck.
 - The dealer looks at both of your two cards (without showing them to you) and tells you (truthfully) that at least one card is a queen. What is the probability that you have been given two queens?

Answer: Let A be the event that I get two queens, and let B be the event that one card is a queen. We have that $\#(A \cap B) = \#(A) = 6$, and $\#(B) = 4 \times 4 + 6 = 22$, so $\Pr(A|B) = 6/22 = 3/11$.

- What is this probability if the dealer tells you instead that at least one card is a red queen?

Answer: Let C be the event that at least one card is a red queen. We have that $\#(A \cap C) = 1 + 2 \times 2 = 5$, and #(C) = 12 + 1 = 13. So, $\Pr(A|C) = 5/13$.

- What is this probability if the dealer tells you instaed that one card is the queen of hearts?

Answer: Let D be the event that one card is the queen of hearts. We have that $\#(A \cap D) = 3$, and #(D) = 7. So $\Pr(A|D) = 3/7$.

• Multiplication Rule: Assuming all conditioning events have positive probability, we have

$$\Pr(\bigcap_{i=1}^{n} A_i) = \Pr(A_1) \Pr(A_2 | A_1) \Pr(A_3 | A_1 \cap A_2) \cdots \Pr(A_n | \bigcap_{i=1}^{n-1} A_i).$$

• *Example:* A class consisting of 4 graduate and 12 undergraduate students is randomly divided into 4 groups of 4. What is the probability that each group includes a graduate students?

Let us denote the four graduate students by 1, 2, 3, and 4. Let $A_1 = \{$ students 1 and 2 are in different group $\}$. Let $A_2 = \{$ students 1, 2, and 3 are in different group $\}$. Let $A_3 = \{$ students 1, 2, 3, and 4 are in different group $\}$. We have that

$$\Pr(A_3) = \Pr(A_1 \cap A_2 \cap A_3) = \Pr(A_1) \Pr(A_2 | A_1) \Pr(A_3 | A_1 \cap A_2) = \Pr(A_1) \Pr(A_2 | A_1) \Pr(A_3 | A_2).$$

Now, $\Pr(A_1) = \frac{12}{15}$ because there are 12 slots out of 15 slots that student 2 can occupy. Similarly, $\Pr(A_2|A_1) = \frac{8}{14} = \frac{4}{7}$, and $\Pr(A_3|A_2) = \frac{4}{13}$. So,

$$\Pr(A_3) = \frac{12}{15} \cdot \frac{4}{7} \cdot \frac{4}{13}$$

• The Law of Total Probability: Let A_1, A_2, \ldots, A_n be a partition of the sample space. Then, for any event B, we have

$$\Pr(B) = \sum_{i=1}^{n} \Pr(A_i) \Pr(B|A_i)$$

The form of this fomula that turns up very often is:

$$\Pr(B) = \Pr(A) \Pr(B|A) + \Pr(A^c) \Pr(B|A^c).$$

• **Baye's Rule:** Let A_1, A_2, \ldots, A_n be a partition of the sample space. Then, for any event B such that Pr(B) > 0, we have, for any i,

$$\Pr(A_i|B) = \frac{\Pr(A_i \cap B)}{\Pr(B)} = \frac{\Pr(A_i)\Pr(B|A_i)}{\sum_{j=1}^n \Pr(A_j)\Pr(B|A_j)}$$

Baye's rule is certainly very useful, but we will not use it much here.

Independence

• Event A is said to be *independent* of event B if $Pr(A \cap B) = Pr(A)Pr(B)$. This implies that, if $Pr(B) \neq 0$, then Pr(A|B) = Pr(A).

Similarly, we say that events A_1, A_2, \ldots, A_n are independent if, for every subset S of $\{1, 2, \ldots, n\}$,

$$\Pr\left(\bigcap_{i\in S} A_i\right) = \prod_{i\in S} \Pr(A_i).$$

In other words, for any subset S and for any $j \notin S$,

$$\Pr\left(A_j \mid \bigcap_{i \in S} A_i\right) = \Pr(A_j).$$

• *Example:* An unfair coin (probability p of showing heads) is tossed n times. What is the probability that the number of heads will be even?

It is natural to assume that the coin tosses are independent. Let us solve a similar problem first. Let $A_{n,k}$ be the event that we get exactly k heads from n tosses. With some counting, we know that

$$\Pr(A_{n,k}) = \binom{n}{k} p^k (1-p)^{n-k}$$

Letting E_n be the event that we get an even number of heads from n tosses, we have

$$\Pr(E_n) = \Pr(A_{n,0}) + \Pr(A_{n,2}) + \Pr(A_{n,4}) + \dots + \Pr(A_{n,2\lfloor n/2 \rfloor})$$
$$= \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose k} p^{2k} (1-p)^{n-2k}.$$

Evaluating this sum is a pain in the ass, so we should find another method. Say, let O_n be the event that we get an odd number of heads after n tosses. We have

$$Pr(E_n) = p Pr(O_{n-1}) + (1-p) Pr(E_{n-1})$$

= $p(1 - Pr(E_{n-1})) + (1-p) Pr(E_{n-1})$
= $p + (1-2p) Pr(E_{n-1}).$

Recall that this is an inhomogeneous linear recurrence relation. The homogeneous part

$$P(E_n) = (1 - 2p)\operatorname{Pr}(E_{n-1})$$

has solution $Pr(E_n) = \alpha (1-2p)^n$. Next, we guess the solution of the inhomogeneous relation to be $\alpha (1-2p)^n + \beta n + \gamma$, so

$$1 = \alpha (1 - 2p)^{0} + 0 \cdot \beta + \gamma$$
$$1 - p = \alpha (1 - 2p)^{1} + 1 \cdot \beta + \gamma$$
$$p^{2} + (1 - p)^{2} = \alpha (1 - 2p)^{2} + 2 \cdot \beta + \gamma$$

Solving, we have that $\alpha = \frac{1}{2}, \beta = 0$, and $\gamma = \frac{1}{2}$. So,

$$\Pr(E_n) = \frac{1 + (1 - 2p)^n}{2}$$

Discrete Random Variables

• A random variable X on a sample space Ω is a real-valued function $X : \Omega \to \mathbb{R}$.

We are only interested in discrete random variable, random variable X whose range is the integers.

• Two random variables X and Y are said to be *independent* if and only if, for pairs of integers x, y, it is true that

$$\Pr(\{X=x\} \cap \{Y=y\}) = \Pr(X=x)\Pr(Y=y)$$

Similarly, random variables X_1, X_2, \ldots, X_n are independent if and only if, for any subset $I \subset \{1, 2, \ldots, n\}$, and for any integer value $x_i, i \in I$,

$$\Pr\left(\bigcap_{i\in I} X_i = x_i\right) = \prod_{i\in I} \Pr(X_i = x_i).$$

• The *expectation* of a discrete random variable X, denoted by $\mathbf{E}[X]$, is given by

$$\mathbf{E}[X] = \sum_{i \in \mathbb{Z}} i \Pr(X = i).$$

• Bernoulli Random Variable: A biased coin with probability p of turning head is flipped. The Bernoulli random variable X is defined to be

$$X = \begin{cases} 1, & \text{if head,} \\ 0, & \text{if tail.} \end{cases}$$

So, $\Pr(X = 1) = p$, $\Pr(X = 0) = 1 - p$, and $\Pr(X = i) = 0$ for other *i*. Thus, $\mathbf{E}[X] = (1 - p) \cdot 0 + p \cdot 1 = p$.

• Binomial Random Variable: The above biased coin is flipped (independently) n times, and X is the number of heads. We have that, if X_i is 1 if the *i*th flip resulted in a head and 0 otherwise, then $X = X_1 + X_2 + \cdots + X_n$. Note that X_i is a Bernoulli random variable for all i.

From a problem in the last section, we have

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

So,

$$\mathbf{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} k \cdot \frac{n}{k} \binom{n-1}{k-1} p^{k} (1-p)^{n-k}$$
$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k} = np \sum_{k=0}^{n-1} \binom{n-1}{k} p^{k} (1-p)^{n-1-k} = np.$$

• Linearity of Expectations: If X and Y are two random variables, then

$$\begin{split} \mathbf{E}[X+Y] &= \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} (i+j) \operatorname{Pr}(\{X=i\} \cap \{Y=j\}) \\ &= \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} i \operatorname{Pr}(\{X=i\} \cap \{Y=j\}) + \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} j \operatorname{Pr}(\{X=i\} \cap \{Y=j\}) \\ &= \sum_{i \in \mathbb{Z}} i \sum_{j \in \mathbb{Z}} \operatorname{Pr}(Y=j) \operatorname{Pr}(X=i \mid Y=j) + \sum_{j \in \mathbb{Z}} j \sum_{i \in \mathbb{Z}} \operatorname{Pr}(X=i) \operatorname{Pr}(Y=j \mid X=i) \\ &= \sum_{i \in \mathbb{Z}} i \operatorname{Pr}(X=i) + \sum_{j \in \mathbb{Z}} j \operatorname{Pr}(Y=j) \\ &= \mathbf{E}[X] + \mathbf{E}[Y]. \end{split}$$

This imples that, for any random variables X_1, X_2, \ldots, X_n ,

$$\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[X_{i}].$$

Linearity of expectations is very powerful because it holds for *any* random variable.

- *Example:* Note that linearity of expection gives us a very easy way to calculate the expectation of the binomial random variable: because $X = X_1 + X_2 + \ldots + X_n$, we have $\mathbf{E}[X] = \mathbf{E}[X_1] + \cdots + \mathbf{E}[X_n] = np$.
- *Example:* n people wearing hats enter a shop. They give their hats to the door boy for safe keeping. When they leave, the door boy hands each of them a random hat. How many people get their own hats back on average?

Let X_i be the *indicator random variable* (random variable that takes either 0 or 1 as its value) such that $X_i = 1$ if person *i* gets his hat back, and $X_i = 0$ otherwise. We have that $\mathbf{E}[X_i] = 1/n$ because *i* gets a random hat back. Now, let X be the number of people who get their own hats back. We have that $X = X_1 + X_2 + \ldots + X_n$. So, $\mathbf{E}[X] = n\mathbf{E}[X_1] = 1$.

- More properties of expectations:
 - For any constant $c, \mathbf{E}[cX] = c\mathbf{E}[X]$.
 - For any random variable X taking only positive values, $\mathbf{E}[X] = \sum_{i>1} \Pr(X \ge i)$.
- Geometric Random Variable: A biased coin (with probability p of showing head) is flipped until the first head shows up. Let X be the number of flips until it happens.
 - We have that $P(X = k) = (1 p)^{k-1}p$ for all $k \ge 1$. Since X takes only positive values:

$$\mathbf{E}[X] = \sum_{i \ge 1} \Pr(X \ge i) = 1 + (1-p) + (1-p)^2 + \dots = \frac{1}{1 - (1-p)} = \frac{1}{p}$$

• Markov's Inequality: For any positive random variable X, for any a > 0,

$$\Pr(X \ge a) \le \frac{\mathbf{E}[X]}{a}$$