
Axioms of Probability

• The subject of probability is concerned with random process, a process that can have multiple outcomes.

• A probability space consists of three components.

1. A sample space Ω of all outcomes of a random process. An element of the sample space is called
a simple element.

2. A family of sets F of allowable events. Each element of F , called an event, is a subset of Ω.

3. A probability function Pr : F → R, satisfying the following properties:

(a) For any E ∈ F , we have 0 ≤ Pr(E) ≤ 1.
(b) Pr(Ω) = 1.
(c) For any finite or countably infinite sequence of pairwise mutually disjoint events E1, E2, E3, . . . ,

Pr
( ∞⋃

i=1

Ei

)
=
∞∑

i=1

Pr(Ei).

• Example: Consider the process of rolling two fair die. We can model the sample space as the set
{(a, b) : 1 ≤ a, b ≤ 6}. We also have Pr({(a, b)}) = 1

36 for all (a, b) pairs. Now, let’s look at some more
interesting events:

– Pr(sum of rolls are even) = 18
36 = 1

2 .

– Pr(the first roll is equal to the second) = 6
36 = 1

6 .

– Pr(the first roll is larger than the second) = 15
36 = 5

12 .

– Pr(at least one roll equals 4) = 11
36 .

• We will be only interested in discrete probability space, the probability space where Ω is finite or
countably infinite. In this case, if event E = {s1, s2, s3, . . . }, we have that

Pr(E) = Pr({s1}) + Pr({s2}) + Pr({s3}) + · · · .

A common special case is when Ω is finite, and every simple event has equal probability. In this case,
we have that

Pr(E) =
#(E)
#(Ω)

.

• Some properties of the probability functions:

– If A ⊆ B, then Pr(A) ≤ Pr(B).

– Union bound:

Pr
( ∞⋃

i=1

Ei

)
≤
∞∑

i=1

Pr(Ei).

– Inclusion-exclusion principle:

Pr
( n⋃

i=1

Ei

)
=

n∑
k=1

(−1)k+1

( ∑
S⊆[n]

#(S)=k

Pr
( ⋂

i∈S

Ei

))
.
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Conditional Probability

• The conditional probability that event A occurs given that event F occurs is

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

The conditional probability is defined only when P (B) 6= 0.

• Conditional probability satisfies all the probability axioms.

– The probability space Ω maps to B.

– The set of allowable events F maps to {A ∩B : A ∈ F}.
– The probability function Pr(A) maps to Pr(A|B).

• Example: You are dealt two cards face down from a shuffled deck of 8 cards consisting of the four
queens and four kings from a standard bridge deck.

– The dealer looks at both of your two cards (without showing them to you) and tells you (truthfully)
that at least one card is a queen. What is the probability that you have been given two queens?

Answer: Let A be the event that I get two queens, and let B be the event that one card is a queen.
We have that #(A ∩B) = #(A) = 6, and #(B) = 4× 4 + 6 = 22, so Pr(A|B) = 6/22 = 3/11.

– What is this probability if the dealer tells you instead that at least one card is a red queen?

Answer: Let C be the event that at least one card is a red queen. We have that #(A ∩ C) =
1 + 2× 2 = 5, and #(C) = 12 + 1 = 13. So, Pr(A|C) = 5/13.

– What is this probability if the dealer tells you instaed that one card is the queen of hearts?

Answer: Let D be the event that one card is the queen of hearts. We have that #(A ∩D) = 3,
and #(D) = 7. So Pr(A|D) = 3/7.

• Multiplication Rule: Assuming all conditioning events have positive probability, we have

Pr(∩n
i=1Ai) = Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩A2) · · ·Pr(An| ∩n−1

i=1 Ai).

• Example: A class consisting of 4 graduate and 12 undergraduate students is randomly divided into 4
groups of 4. What is the probability that each group includes a graduate students?

Let us denote the four graduate students by 1, 2, 3, and 4.
Let A1 = {students 1 and 2 are in different group}.
Let A2 = {students 1, 2, and 3 are in different group}.
Let A3 = {students 1, 2, 3, and 4 are in different group}.
We have that

Pr(A3) = Pr(A1 ∩A2 ∩A3) = Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩A2) = Pr(A1) Pr(A2|A1) Pr(A3|A2).

Now, Pr(A1) = 12/15 because there are 12 slots out of 15 slots that student 2 can occupy. Similarly,
Pr(A2|A1) = 8

14 = 4
7 , and Pr(A3|A2) = 4

13 . So,

Pr(A3) =
12
15
· 4

7
· 4

13
.
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• The Law of Total Probability: Let A1, A2, . . . , An be a partition of the sample space. Then, for
any event B, we have

Pr(B) =
n∑

i=1

Pr(Ai) Pr(B|Ai).

The form of this fomula that turns up very often is:

Pr(B) = Pr(A) Pr(B|A) + Pr(Ac) Pr(B|Ac).

• Baye’s Rule: Let A1, A2, . . . , An be a partition of the sample space. Then, for any event B such that
Pr(B) > 0, we have, for any i,

Pr(Ai|B) =
Pr(Ai ∩B)

Pr(B)
=

Pr(Ai) Pr(B|Ai)∑n
j=1 Pr(Aj) Pr(B|Aj)

.

Baye’s rule is certainly very useful, but we will not use it much here.

Independence

• Event A is said to be independent of event B if Pr(A ∩ B) = Pr(A) Pr(B). This implies that, if
Pr(B) 6= 0, then Pr(A|B) = Pr(A).

Similarly, we say that events A1, A2, . . . , An are independent if, for every subset S of {1, 2, . . . , n},

Pr
( ⋂

i∈S

Ai

)
=
∏
i∈S

Pr(Ai).

In other words, for any subset S and for any j /∈ S,

Pr
(
Aj

∣∣∣∣ ⋂
i∈S

Ai

)
= Pr(Aj).

• Example: An unfair coin (probability p of showing heads) is tossed n times. What is the probability
that the number of heads will be even?

It is natural to assume that the coin tosses are independent. Let us solve a similar problem first. Let
An,k be the event that we get exactly k heads from n tosses. With some counting, we know that

Pr(An,k) =
(
n

k

)
pk(1− p)n−k.

Letting En be the event that we get an even number of heads from n tosses, we have

Pr(En) = Pr(An,0) + Pr(An,2) + Pr(An,4) + . . .+ Pr(An,2bn/2c)

=
bn/2c∑
k=0

(
n

k

)
p2k(1− p)n−2k.

Evaluating this sum is a pain in the ass, so we should find another method. Say, let On be the event
that we get an odd number of heads after n tosses. We have

Pr(En) = pPr(On−1) + (1− p) Pr(En−1)
= p(1− Pr(En−1)) + (1− p) Pr(En−1)
= p+ (1− 2p) Pr(En−1).
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Recall that this is an inhomogeneous linear recurrence relation. The homogeneous part

P (En) = (1− 2p) Pr(En−1)

has solution Pr(En) = α(1 − 2p)n. Next, we guess the solution of the inhomogeneous relation to be
α(1− 2p)n + βn+ γ, so

1 = α(1− 2p)0 + 0 · β + γ

1− p = α(1− 2p)1 + 1 · β + γ

p2 + (1− p)2 = α(1− 2p)2 + 2 · β + γ

Solving, we have that α = 1
2 , β = 0, and γ = 1

2 . So,

Pr(En) =
1 + (1− 2p)n

2
.

Discrete Random Variables

• A random variable X on a sample space Ω is a real-valued function X : Ω→ R.
We are only interested in discrete random variable, random variable X whose range is the integers.

• Two random variables X and Y are said to be independent if and only if, for pairs of integers x, y, it
is true that

Pr({X = x} ∩ {Y = y}) = Pr(X = x) Pr(Y = y).

Similarly, random variables X1, X2, . . . , Xn are independent if and only if, for any subset I ⊂
{1, 2, . . . , n}, and for any integer value xi, i ∈ I,

Pr
(⋂

i∈I

Xi = xi

)
=
∏
i∈I

Pr(Xi = xi).

• The expectation of a discrete random variable X, denoted by E[X], is given by

E[X] =
∑
i∈Z

iPr(X = i).

• Bernoulli Random Variable: A biased coin with probability p of turning head is flipped. The
Bernoulli random variable X is defined to be

X =

{
1, if head,
0, if tail.

So, Pr(X = 1) = p,Pr(X = 0) = 1−p, and Pr(X = i) = 0 for other i. Thus, E[X] = (1−p)·0+p·1 = p.

• Binomial Random Variable: The above biased coin is flipped (independently) n times, and X is
the number of heads. We have that, if Xi is 1 if the ith flip resulted in a head and 0 otherwise, then
X = X1 +X2 + · · ·+Xn. Note that Xi is a Bernoulli random variable for all i.

From a problem in the last section, we have

Pr(X = k) =
(
n

k

)
pk(1− p)n−k.
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So,

E[X] =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k =

n∑
k=1

k

(
n

k

)
pk(1− p)n−k =

n∑
k=1

k · n
k

(
n− 1
k − 1

)
pk(1− p)n−k

= np

n∑
k=1

(
n− 1
k − 1

)
pk−1(1− p)n−k = np

n−1∑
k=0

(
n− 1
k

)
pk(1− p)n−1−k = np.

• Linearity of Expectations: If X and Y are two random variables, then

E[X + Y ] =
∑
i∈Z

∑
j∈Z

(i+ j) Pr({X = i} ∩ {Y = j})

=
∑
i∈Z

∑
j∈Z

iPr({X = i} ∩ {Y = j}) +
∑
i∈Z

∑
j∈Z

j Pr({X = i} ∩ {Y = j})

=
∑
i∈Z

i
∑
j∈Z

Pr(Y = j) Pr(X = i | Y = j) +
∑
j∈Z

j
∑
i∈Z

Pr(X = i) Pr(Y = j | X = i)

=
∑
i∈Z

iPr(X = i) +
∑
j∈Z

j Pr(Y = j)

= E[X] + E[Y ].

This imples that, for any random variables X1, X2, . . . , Xn,

E
[ n∑

i=1

Xi

]
=

n∑
i=1

E[Xi].

Linearity of expectations is very powerful because it holds for any random variable.

• Example: Note that linearity of expection gives us a very easy way to calculate the expectation of the
binomial random variable: because X = X1 +X2 + . . .+Xn, we have E[X] = E[X1]+ · · ·+E[Xn] = np.

• Example: n people wearing hats enter a shop. They give their hats to the door boy for safe keeping.
When they leave, the door boy hands each of them a random hat. How many people get their own
hats back on average?

Let Xi be the indicator random variable (random variable that takes either 0 or 1 as its value) such
that Xi = 1 if person i gets his hat back, and Xi = 0 otherwise. We have that E[Xi] = 1/n because i
gets a random hat back. Now, let X be the number of people who get their own hats back. We have
that X = X1 +X2 + . . .+Xn. So, E[X] = nE[X1] = 1.

• More properties of expectations:

– For any constant c,E[cX] = cE[X].
– For any random variable X taking only positive values, E[X] =

∑
i≥1 Pr(X ≥ i).

• Geometric Random Variable: A biased coin (with probability p of showing head) is flipped until
the first head shows up. Let X be the number of flips until it happens.
We have that P (X = k) = (1− p)k−1p for all k ≥ 1. Since X takes only positive values:

E[X] =
∑
i≥1

Pr(X ≥ i) = 1 + (1− p) + (1− p)2 + · · · = 1
1− (1− p)

=
1
p
.

• Markov’s Inequality: For any positive random variable X, for any a > 0,

Pr(X ≥ a) ≤ E[X]
a

.
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