Axioms of Probability

e The subject of probability is concerned with random process, a process that can have multiple outcomes.
e A probability space consists of three components.
1. A sample space 2 of all outcomes of a random process. An element of the sample space is called
a simple element.
2. A family of sets F of allowable events. Each element of F, called an event, is a subset of €.
3. A probability function Pr: F — R, satisfying the following properties:
(a) For any E € F, we have 0 < Pr(E) < 1.
(b) Pr(92) =1.

(¢) For any finite or countably infinite sequence of pairwise mutually disjoint events Eq, Es, Ej, . .

Pr ( [j E) = :1 Pr(E;).
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e FExample: Consider the process of rolling two fair die. We can model the sample space as the set
{(a,b) :1 < a,b<6}. We also have Pr({(a,b)}) = 3= for all (a,b) pairs. Now, let’s look at some more
interesting events:

— Pr(sum of rolls are even) = & = 1.

— Pr(the first roll is equal to the second) = & = 1.

— Pr(the first roll is larger than the second) = 2 = 2.
— Pr(at least one roll equals 4) = 3L

e We will be only interested in discrete probability space, the probability space where 2 is finite or
countably infinite. In this case, if event E = {s1, s, s3, ...}, we have that

Pr(E) = Pr({s1}) + Pr({s2}) + Pr({ss}) +--- .

A common special case is when 2 is finite, and every simple event has equal probability. In this case,
we have that

e Some properties of the probability functions:

— If AC B, then Pr(A4) < Pr(B).
— Union bound: - -
Pr < U Ez) <> Pr(E;).
i=1 i=1

— Inclusion-exclusion principle:
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Conditional Probability

e The conditional probability that event A occurs given that event F' occurs is

Pr(AN B)
Pr(A|B) = ————=
(A|B) = —5- B
The conditional probability is defined only when P(B) # 0.

e Conditional probability satisfies all the probability axioms.

— The probability space 2 maps to B.
— The set of allowable events F maps to {ANB: A€ F}.
— The probability function Pr(A) maps to Pr(A|B).

o FEzample: You are dealt two cards face down from a shuffled deck of 8 cards consisting of the four
queens and four kings from a standard bridge deck.

— The dealer looks at both of your two cards (without showing them to you) and tells you (truthfully)
that at least one card is a queen. What is the probability that you have been given two queens?

Answer: Let A be the event that I get two queens, and let B be the event that one card is a queen.
We have that #(ANB) = #(A) =6, and #(B) =4 x4+ 6 = 22, so Pr(A4|B) = 6/22 = 3/11.

— What is this probability if the dealer tells you instead that at least one card is a red queen?

Answer: Let C be the event that at least one card is a red queen. We have that #(ANC) =
1+2x2=5,and #(C) =12+ 1 =13. So, Pr(A|C) = 5/13.

— What is this probability if the dealer tells you instaed that one card is the queen of hearts?

Answer: Let D be the event that one card is the queen of hearts. We have that #(A N D) = 3,
and #(D) = 7. So Pr(A|D) = 3/7.

e Multiplication Rule: Assuming all conditioning events have positive probability, we have

PI‘( Z‘LzlA'L) = PI‘(Al) PI‘(A2|A1) PI‘(A3|A1 N Ag) e PI‘(An‘ ﬂ?:_ll Az)

e Example: A class consisting of 4 graduate and 12 undergraduate students is randomly divided into 4
groups of 4. What is the probability that each group includes a graduate students?

Let us denote the four graduate students by 1, 2, 3, and 4.
Let A; = {students 1 and 2 are in different group}.

Let A; = {students 1, 2, and 3 are in different group}.
Let A3 = {students 1, 2, 3, and 4 are in different group}.
We have that

PI'(Ag) = PI‘(Al n A2 n Ag) = PI‘(Al) PI'(A2|A1) PI‘(A3|A1 N AQ) = PI‘(Al) PT(A2|A1) PI'(A3|A2)

Now, Pr(A;) = 12/15 because there are 12 slots out of 15 slots that student 2 can occupy. Similarly,
Pr(4z|Ar) = & = 4, and Pr(A3]42) = 1. So,
12 4 4
Pr(Adz)=— - —.
M) =357 13



e The Law of Total Probability: Let A;, As,..., A, be a partition of the sample space. Then, for
any event B, we have

Pr(B) = ZPr(Ai) Pr(B|4;).

The form of this fomula that turns up very often is:

Pr(B) = Pr(A) Pr(B|A) + Pr(A°) Pr(B|A°).

e Baye’s Rule: Let A1, Ao, ..., A, be a partition of the sample space. Then, for any event B such that
Pr(B) > 0, we have, for any i,

Pr(A;|B) = (B) ~ S” Pr(A;) Pr(B|Aj)

Jj=1

Pr(A; N B) Pr(A;) Pr(B|A;)
Pr

Baye’s rule is certainly very useful, but we will not use it much here.

Independence

e Event A is said to be independent of event B if Pr(A N B) = Pr(A)Pr(B). This implies that, if
Pr(B) # 0, then Pr(A|B) = Pr(A).

Similarly, we say that events Ay, Ag, ..., A, are independent if, for every subset S of {1,2,...,n},
ieS =
In other words, for any subset S and for any j ¢ S,

Pr (Aj N Ai> = Pr(4;).

€S

e Ezample: An unfair coin (probability p of showing heads) is tossed n times. What is the probability
that the number of heads will be even?

It is natural to assume that the coin tosses are independent. Let us solve a similar problem first. Let
Ay i be the event that we get exactly k heads from n tosses. With some counting, we know that

n

Pr(An,k:) = (k)pk(l —p)nik.
Letting E, be the event that we get an even number of heads from n tosses, we have

Pr(E,) = Pr(Ano) + Pr(A4y,2) + Pr(A,4) + ...+ Pr(4, 2n/2))
Ln/2]

= ;} <Z)p2’“(1p)”2’“~

Evaluating this sum is a pain in the ass, so we should find another method. Say, let O,, be the event
that we get an odd number of heads after n tosses. We have

Pr(E,) = pPr(Op_1) + (1 —p)Pr(E,_1)
=p(1-Pr(E,-1))+ (1 —p)Pr(E,_1)
=p+(1-2p)Pr(E,_1).



Recall that this is an inhomogeneous linear recurrence relation. The homogeneous part
P(En) = (1 - 2}7) Pr(En—l)

has solution Pr(E,) = a(1 — 2p)™. Next, we guess the solution of the inhomogeneous relation to be
a1 — 2)" + Bn + 7, 50

l=a(1-2p)°+0-8+7
l-p=a(l—2p)'+1-B+7
PH1-p?=al-2p)?+2-F+7y

Solving, we have that o = %,6 =0,and vy = % So,

1+ (1—2p)"

Pr(E,) = 5

Discrete Random Variables

e A random variable X on a sample space € is a real-valued function X : Q — R.
We are only interested in discrete random variable, random variable X whose range is the integers.
e Two random variables X and Y are said to be independent if and only if, for pairs of integers x,y, it

is true that
Pr{X =a2}n{Y =y}) =Pr(X =2)Pr(Y =y).

Similarly, random variables X3, X5, ..., X, are independent if and only if, for any subset I C
{1,2,...,n}, and for any integer value xz;, ¢ € I,
Pr (mXZ =T; > = HPr(Xz = Ii)-
il iel

e The expectation of a discrete random variable X, denoted by E[X], is given by
E[X] =) iPr(X =1i).
=

e Bernoulli Random Variable: A biased coin with probability p of turning head is flipped. The
Bernoulli random variable X is defined to be

¥ = 1, if head,
0, if tail.
So, Pr(X =1) = p,Pr(X =0) = 1—p, and Pr(X = i) = 0 for other ¢. Thus, E[X] = (1-p)-0+p-1 = p.

e Binomial Random Variable: The above biased coin is flipped (independently) n times, and X is
the number of heads. We have that, if X; is 1 if the ith flip resulted in a head and 0 otherwise, then
X=X+ X3+---+ X,. Note that X; is a Bernoulli random variable for all i.

From a problem in the last section, we have



So,
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e Linearity of Expectations: If X and Y are two random variables, then

EX +Y] = ZZ i+ ) Pr({X =i}n{Y =3})

1€Z JEL
=SS ip({X =0 {y =)+ DY jPr({X =ik n{y = j})
i€Z jET iz et
_Z ZPr X=ilY =j) +Z ZPr Y=j|X=i
i€Z  jJEL jez ez
=D iPr(X =)+ Y jPr(Y =
i€EZ jEZ
=E[X]|+E[Y].

This imples that, for any random variables X7, Xo, ..., X,
B> x| = Eix
i=1 i=1

Linearity of expectations is very powerful because it holds for any random variable.

e FExample: Note that linearity of expection gives us a very easy way to calculate the expectation of the
binomial random variable: because X = X7+ Xo+...+X,,, we have E[X]| = E[X;]+- - -+ E[X,,] = np.

e Example: n people wearing hats enter a shop. They give their hats to the door boy for safe keeping.
When they leave, the door boy hands each of them a random hat. How many people get their own
hats back on average?

Let X; be the indicator random variable (random variable that takes either 0 or 1 as its value) such
that X; = 1 if person ¢ gets his hat back, and X; = 0 otherwise. We have that E[X;] = 1/n because 4
gets a random hat back. Now, let X be the number of people who get their own hats back. We have
that X = X3 + Xa + ...+ X,,. So, E[X] = nE[X;] = 1.

e More properties of expectations:

— For any constant ¢, E[cX] = cE[X].
— For any random variable X taking only positive values, E[X]| =3, Pr(X >1).
e Geometric Random Variable: A biased coin (with probability p of showing head) is flipped until
the first head shows up. Let X be the number of flips until it happens.
We have that P(X = k) = (1 — p)*~!p for all k > 1. Since X takes only positive values:
1 1

X]:ZPI“(XZ’L')=1+(1—p)—|—(1—p)2+"'=ng-

e Markov’s Inequality: For any positive random variable X, for any a > 0,
E[X]

Pr(X >a) <
r(X >a) < .



