
Introduction to Refactoring

Sutee Sudprasert

1

Saturday, July 14, 12

Credits

• Refactoring : Improving the design of existing code - Martin Fowler

• Design Patterns - GOF

2

Saturday, July 14, 12

What is refactoring?

• “Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure.” - Refactoring : Preface

• You are improving the design of the code after it has been writing.

• A good design comes first, and the coding comes second.

• A good design may turn to bad over time the code will be modified.

• With refactoring you can take a bad design, and rework it into well-designed
code.

3

Saturday, July 14, 12

Refactoring, a First Example (In Python)

• The sample program is a program to calculate and print a statement of a
customer’s charges at a video store.

• Input: movies that a customer rented and for how long

• Output: the charges which depend on

• how long the movie is rented

• identifies the type movie (regular, children’s, new releases)

4

Saturday, July 14, 12

The starting point

 Show TOC | Frames My Desktop | Account | Log Out | Subscription | Help

Software Engineering > Refactoring: Improving the Design of Existing Code > 1. Refactoring, a First Example > The Starting
Point

See All Titles

< BACK Make Note | Bookmark CONTINUE >

153016244225047003091045078243058015157112235238112220029206139221120053129177172235121241

The Starting Point
The sample program is very simple. It is a program to calculate and print a statement of a customer's charges
at a video store. The program is told which movies a customer rented and for how long. It then calculates the
charges, which depend on how long the movie is rented, and identifies the type movie. There are three kinds
of movies: regular, children's, and new releases. In addition to calculating charges, the statement also
computes frequent renter points, which vary depending on whether the film is a new release.

Several classes represent various video elements. Here's a class diagram to show them (Figure 1.1).

Figure 1.1. Class diagram of the starting-point classes. Only the most important features are shown. The
notation is Unified Modeling Language UML [Fowler, UML].

I'll show the code for each of these classes in turn.

Movie

Movie is just a simple data class.

 public class Movie {

 public static final int CHILDRENS = 2;
 public static final int REGULAR = 0;
 public static final int NEW_RELEASE = 1;

 private String _title;
 private int _priceCode;

 public Movie(String title, int priceCode) {
 _title = title;
 _priceCode = priceCode;
 }

 public int getPriceCode() {
 return _priceCode;

Safari | Refactoring: Improving the Design of Existing Code -> The Starting Point

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=12 (1 of 5) [6/2/2002 11:49:09 PM]

The body for this method is on the facing page.

Figure 1.2. Interactions for the statement method

public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line
 switch (each.getMovie().getPriceCode()) {
 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented() > 2)
 thisAmount += (each.getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() - 3) * 1.5;
 break;

 }

 // add frequent renter points

Safari | Refactoring: Improving the Design of Existing Code -> The Starting Point

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=12 (3 of 5) [6/2/2002 11:49:09 PM]

5

Saturday, July 14, 12

The starting point

• python code

6

Saturday, July 14, 12

What’s wrong with this code?

• It is not well designed and certainly no object oriented.

• There’s nothing wrong with a quick and dirty simple program

• But there are some real problems with this program if this is a
representative fragment of a more complex system

• The statement routine in Customer class is too long and does many of things
that it does should really be done by the other classes

• A poorly designed system is hard to change because it is hard to figure out
where the changes are needed (it is easy to make a mistake and introduce
bugs)

7

Saturday, July 14, 12

What’s wrong of this code?

• Suppose the users would like a statement printed in HTML

• it is impossible to reuse any of behavior of the current statement method

• you can just copy the statement method and make whatever changes you
need

• What happens when the charging rules change?

• you have to fix both statement and htmlStatement

• if you are writing a program that you don't expect to change, then cut and
paste is fine.

8

Saturday, July 14, 12

What’s wrong of this code?

• What if the user want to make changes to the way the classify movies, but
they haven’t yet decided on the change they are going to make? These
changes will affect both

• the way renters are charged for movie

• the way that frequent renter points are calculated

• The statement method is where the changes have to be made to deal with
changes in classification and charging rules

• Furthermore, as the rules grow in complexity it's going to be harder to figure
out where to make the changes and harder to make them without making a
mistake.

9

Saturday, July 14, 12

First step : Extract Method
determine amount for each line
if rental.movie.price_code == Movie.REGULAR:
 this_amount += 2.0
 if rental.days_rented > 2:
 this_amount += (rental.days_rented - 2) * 1.5
elif rental.movie.price_code == Movie.NEW_RELEASE:
 this_amount += rental.days_rented * 3
elif rental.movie.price_code == Movie.CHILDRENS:
 this_amount += 1.5
 if rental.days_rented > 3:
 this_amount += (rental.days_rented - 3) * 1.5

amount_for(rental) : return this_amount

10

Saturday, July 14, 12

Second step : Rename Variables

def amount_for(self, rental):
 this_amount = 0.0
 # determine amount for each line
 if rental.movie.price_code == Movie.REGULAR:
 this_amount += 2.0
 if rental.days_rented > 2:
 this_amount += (rental.days_rented - 2) * 1.5
 elif rental.movie.price_code == Movie.NEW_RELEASE:
 this_amount += rental.days_rented * 3
 elif rental.movie.price_code == Movie.CHILDRENS:
 this_amount += 1.5
 if rental.days_rented > 3:
 this_amount += (rental.days_rented - 3) * 1.5
 return this_amount

it doesn’t make sense for this context

11

Saturday, July 14, 12

Second step : Rename Variables

def amount_for(self, rental):
 result = 0.0
 # determine amount for each line
 if rental.movie.price_code == Movie.REGULAR:
 result += 2.0
 if rental.days_rented > 2:
 result += (rental.days_rented - 2) * 1.5
 elif rental.movie.price_code == Movie.NEW_RELEASE:
 result += rental.days_rented * 3
 elif rental.movie.price_code == Movie.CHILDRENS:
 result += 1.5
 if rental.days_rented > 3:
 result += (rental.days_rented - 3) * 1.5
 return result

12

Saturday, July 14, 12

Second step : Rename Variables

def amount_for(self, rental):
 result = 0.0
 # determine amount for each line
 if rental.movie.price_code == Movie.REGULAR:
 result += 2.0
 if rental.days_rented > 2:
 result += (rental.days_rented - 2) * 1.5
 elif rental.movie.price_code == Movie.NEW_RELEASE:
 result += rental.days_rented * 3
 elif rental.movie.price_code == Movie.CHILDRENS:
 result += 1.5
 if rental.days_rented > 3:
 result += (rental.days_rented - 3) * 1.5
 return result

Is renaming worth the effort?

12

Saturday, July 14, 12

Second step : Rename Variables

def amount_for(self, rental):
 result = 0.0
 # determine amount for each line
 if rental.movie.price_code == Movie.REGULAR:
 result += 2.0
 if rental.days_rented > 2:
 result += (rental.days_rented - 2) * 1.5
 elif rental.movie.price_code == Movie.NEW_RELEASE:
 result += rental.days_rented * 3
 elif rental.movie.price_code == Movie.CHILDRENS:
 result += 1.5
 if rental.days_rented > 3:
 result += (rental.days_rented - 3) * 1.5
 return result

Is renaming worth the effort?

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

12

Saturday, July 14, 12

Third step : Move Method

class Customer(object):
...
def amount_for(self, rental):
 result = 0.0
 # determine amount for each line
 if rental.movie.price_code == Movie.REGULAR:
 result += 2.0
 if rental.days_rented > 2:
 result += (rental.days_rented - 2) * 1.5
 elif rental.movie.price_code == Movie.NEW_RELEASE:
 result += rental.days_rented * 3
 elif rental.movie.price_code == Movie.CHILDRENS:
 result += 1.5
 if rental.days_rented > 3:
 result += (rental.days_rented - 3) * 1.5
 return result

This method doesn’t use any data from Customer class

13

Saturday, July 14, 12

Third step : Move Method

class Rental(object):
...
def get_charge(self):
 result = 0.0
 # determine amount for each line
 if self.movie.price_code == Movie.REGULAR:
 result += 2.0
 if self.days_rented > 2:
 result += (self.days_rented - 2) * 1.5
 elif self.movie.price_code == Movie.NEW_RELEASE:
 result += self.days_rented * 3
 elif self.movie.price_code == Movie.CHILDRENS:
 result += 1.5
 if self.days_rented > 3:
 result += (self.days_rented - 3) * 1.5
 return result

14

Saturday, July 14, 12

Third step : Move Method
class Customer(object):
...
def amount_for(self, rental):
 return rental.get_charge()

def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 this_amount = self.amount_for(rental)
 ...

15

Saturday, July 14, 12

Third step : Move Method
class Customer(object):
...
def amount_for(self, rental):
 return rental.get_charge()

def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 this_amount = self.amount_for(rental)
 ...

class Customer(object):
...
def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 this_amount = rental.get_charge()
 ...

15

Saturday, July 14, 12

Forth step : Replace Temp with Query
def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 this_amount = rental.get_charge()

 # add requent renter points
 frequent_renter_points += 1

 # add bonus for a two day new release rental
 if rental.movie.price_code == Movie.NEW_RELEASE and rental.days_rented > 1:
 frequent_renter_points += 1

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, this_amount)
 total_amount += this_amount

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)

 return result

16

Saturday, July 14, 12

Forth step : Replace Temp with Query
def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 this_amount = rental.get_charge()

 # add requent renter points
 frequent_renter_points += 1

 # add bonus for a two day new release rental
 if rental.movie.price_code == Movie.NEW_RELEASE and rental.days_rented > 1:
 frequent_renter_points += 1

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, this_amount)
 total_amount += this_amount

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)

 return result

Temps are often a problem
in that they cause a lot of
parameters to be passed
around when they don't

have to be

16

Saturday, July 14, 12

Forth step : Replace Temp with Query
def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 # add requent renter points
 frequent_renter_points += 1

 # add bonus for a two day new release rental
 if rental.movie.price_code == Movie.NEW_RELEASE and rental.days_rented > 1:
 frequent_renter_points += 1

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())
 total_amount += rental.get_charge()

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)

 return result

17

Saturday, July 14, 12

Fifth step : Extract Method
def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 # add requent renter points
 frequent_renter_points += 1

 # add bonus for a two day new release rental
 if rental.movie.price_code == Movie.NEW_RELEASE and rental.days_rented > 1:
 frequent_renter_points += 1

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())
 total_amount += rental.get_charge()

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)

 return result

18

Saturday, July 14, 12

Fifth step : Extract Method
def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:
 frequent_renter_points += rental.get_frequent_renter_points()

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())
 total_amount += rental.get_charge()

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)
 return result

class Rental(object):
...
def get_frequent_renter_points(self):
 if self.movie.price_code == Movie.NEW_RELEASE and self.days_rented > 1:
 return 2
 else:
 return 1

19

Saturday, July 14, 12

Sequence diagrams and Class diagram

Figure 1.4. Class diagram before extraction and movement of the frequent renter points calculation

Figure 1.5. Sequence diagrams before extraction and movement of the frequent renter points calculation

Figure 1.6. Class diagram after extraction and movement of the frequent renter points calculation

Figure 1.7. Sequence diagram before extraction and movement of the frequent renter points calculation

Safari | Refactoring: Improving the Design of Existing Code -> Decomposing and Redistributing the Statement Method

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=14 (10 of 15) [6/2/2002 11:50:04 PM]

Removing Temps

As I suggested before, temporary variables can be a problem. They are useful only within their own routine, and thus they
encourage long, complex routines. In this case we have two temporary variables, both of which are being used to get a total
from the rentals attached to the customer. Both the ASCII and HTML versions require these totals. I like to use Replace Temp
with Query to replace totalAmount and frequentRentalPoints with query methods. Queries are accessible to any
method in the class and thus encourage a cleaner design without long, complex methods:

 class Customer...
 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 frequentRenterPoints += each.getFrequentRenterPoints();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 totalAmount += each.getCharge();
 }

 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";
 result += "You earned " + String.valueOf(frequentRenterPoints) +
 " frequent renter points";
 return result;
 }
I began by replacing totalAmount with a charge method on customer:

 class Customer...

 public String statement() {
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();

Safari | Refactoring: Improving the Design of Existing Code -> Decomposing and Redistributing the Statement Method

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=14 (11 of 15) [6/2/2002 11:50:04 PM]

20

Saturday, July 14, 12

One loop, One function

def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:
 frequent_renter_points += rental.get_frequent_renter_points()

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())
 total_amount += rental.get_charge()

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)
 return result

You should make each loop perform only one function.

21

Saturday, July 14, 12

One loop, One function

def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:
 frequent_renter_points += rental.get_frequent_renter_points()

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())
 total_amount += rental.get_charge()

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)
 return result

You should make each loop perform only one function.

how many performing functions are in this loop?

21

Saturday, July 14, 12

Sixth step : Replace Temp with Query

def statement(self):
 total_amount = 0.0
 frequent_renter_points = 0
 result = 'Rental Record for %s\n' % (self.name)
 for rental in self._rentals:

 frequent_renter_points += rental.get_frequent_renter_points()

 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 total_amount += rental.get_charge()

 # add footer lines
 result += 'Amount owed is %.1f\n' % (total_amount)
 result += 'You earned %d frequent renter points' % (frequent_renter_points)
 return result

22

Saturday, July 14, 12

Sixth step : Replace Temp with Query
def get_total_charge(self):
 result = 0.0
 for rental in self._rentals:
 result += rental.get_charge()
 return result

def get_total_frequent_renter_points(self):
 result = 0.0
 for rental in self._rentals:
 result += rental.get_frequent_renter_points()
 return result

def statement(self):
 result = 'Rental Record for %s\n' % (self.name)

 for rental in self._rentals:
 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += 'Amount owed is %.1f\n' % (self.get_total_charge())
 result += 'You earned %d frequent renter points' % \
 (self.get_total_frequent_renter_points())
 return result

23

Saturday, July 14, 12

Sequence diagrams and Class diagram

24Figure 1.11. Sequence diagram after extraction of the totals

It is worth stopping to think a bit about the last refactoring. Most refactorings reduce the amount of code, but this one increases
it. That's because Java 1.1 requires a lot of statements to set up a summing loop. Even a simple summing loop with one line of
code per element needs six lines of support around it. It's an idiom that is obvious to any programmer but is a lot of lines all the
same.

The other concern with this refactoring lies in performance. The old code executed the "while" loop once, the new code
executes it three times. A while loop that takes a long time might impair performance. Many programmers would not do this
refactoring simply for this reason. But note the words if and might. Until I profile I cannot tell how much time is needed for the
loop to calculate or whether the loop is called often enough for it to affect the overall performance of the system. Don't worry
about this while refactoring. When you optimize you will have to worry about it, but you will then be in a much better position
to do something about it, and you will have more options to optimize effectively (see the discussion on page 69).

These queries are now available for any code written in the customer class. They can easily be added to the interface of the
class should other parts of the system need this information. Without queries like these, other methods have to deal with
knowing about the rentals and building the loops. In a complex system, that will lead to much more code to write and maintain.

You can see the difference immediately with the htmlStatement. I am now at the point where I take off my refactoring
hat and put on my adding function hat. I can write htmlStatement as follows and add appropriate tests:

 public String htmlStatement() {
 Enumeration rentals = _rentals.elements();
 String result = "<H1>Rentals for " + getName() + "</ H1><P>\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 //show figures for each rental
 result += each.getMovie().getTitle()+ ": " +
 String.valueOf(each.getCharge()) + "
\n";

Safari | Refactoring: Improving the Design of Existing Code -> Decomposing and Redistributing the Statement Method

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=14 (14 of 15) [6/2/2002 11:50:04 PM]

Figure 1.11. Sequence diagram after extraction of the totals

It is worth stopping to think a bit about the last refactoring. Most refactorings reduce the amount of code, but this one increases
it. That's because Java 1.1 requires a lot of statements to set up a summing loop. Even a simple summing loop with one line of
code per element needs six lines of support around it. It's an idiom that is obvious to any programmer but is a lot of lines all the
same.

The other concern with this refactoring lies in performance. The old code executed the "while" loop once, the new code
executes it three times. A while loop that takes a long time might impair performance. Many programmers would not do this
refactoring simply for this reason. But note the words if and might. Until I profile I cannot tell how much time is needed for the
loop to calculate or whether the loop is called often enough for it to affect the overall performance of the system. Don't worry
about this while refactoring. When you optimize you will have to worry about it, but you will then be in a much better position
to do something about it, and you will have more options to optimize effectively (see the discussion on page 69).

These queries are now available for any code written in the customer class. They can easily be added to the interface of the
class should other parts of the system need this information. Without queries like these, other methods have to deal with
knowing about the rentals and building the loops. In a complex system, that will lead to much more code to write and maintain.

You can see the difference immediately with the htmlStatement. I am now at the point where I take off my refactoring
hat and put on my adding function hat. I can write htmlStatement as follows and add appropriate tests:

 public String htmlStatement() {
 Enumeration rentals = _rentals.elements();
 String result = "<H1>Rentals for " + getName() + "</ H1><P>\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 //show figures for each rental
 result += each.getMovie().getTitle()+ ": " +
 String.valueOf(each.getCharge()) + "
\n";

Safari | Refactoring: Improving the Design of Existing Code -> Decomposing and Redistributing the Statement Method

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=14 (14 of 15) [6/2/2002 11:50:04 PM]

Saturday, July 14, 12

HTML Statement

def html_statement(self):
 result = '<h1>Rentals for %s</h1><p>\n' % (self.name)
 for rental in self._rentals:
 # show figures for this rental
 result += '%s : %.1f
\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += '<p>You owe %.1f<p>\n' % (self.get_total_charge())
 result += 'On this rental you earned %d frequent renter points<p>' % \
 (self.get_total_frequent_renter_points())
 return result

statement and html_statement methods perform similar
steps in the same order, yet the steps are different.

25

Saturday, July 14, 12

Seventh step : Form Template Method
 " frequent renter points<P>";
 return result;
 }

Before I can use Form Template Method I need to arrange things so that the two methods are subclasses of some common
superclass. I do this by using a method object [Beck] to create a separate strategy hierarchy for printing the statements (Figure
11.1).

Figure 11.1. Using a strategy for statements

 class Statement {}
 class TextStatement extends Statement {}
 class HtmlStatement extends Statement {}

Now I use Move Method to move the two statement methods over to the subclasses:

 class Customer...
public String statement() {
 return new TextStatement().value(this);
}
public String htmlStatement() {
 return new HtmlStatement().value(this);
}

 class TextStatement {
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result = "Rental Record for " + aCustomer.getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 }

Safari | Refactoring: Improving the Design of Existing Code -> Form Template Method

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=139 (3 of 7) [6/3/2002 12:51:20 AM]

First, we have to create a separate strategy hierarchy for printing the statements
and move the two statement methods over to the subclasses.

26

Saturday, July 14, 12

Design Patterns : Strategy

• Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients
that use it.

• Structure

Design Patterns: Elements of Reusable Object-Oriented Software

351

Structure

Participants

• Strategy (Compositor)
o declares an interface common to all supported algorithms. Context

uses this interface to call the algorithm defined by a

ConcreteStrategy.

• ConcreteStrategy (SimpleCompositor, TeXCompositor,ArrayCompositor)
o implements the algorithm using the Strategy interface.

• Context (Composition)
o is configured with a ConcreteStrategy object.

o maintains a reference to a Strategy object.

o may define an interface that lets Strategy access its data.

Collaborations

• Strategy and Context interact to implement the chosen algorithm. Acontext

may pass all data required by the algorithm to the strategywhen the algorithm

is called. Alternatively, the context can passitself as an argument to

Strategy operations. That lets the strategycall back on the context as

required.

• A context forwards requests from its clients to its strategy. Clientsusually

create and pass a ConcreteStrategy object to the context;thereafter,

clients interact with the context exclusively. There isoften a family of

ConcreteStrategy classes for a client to choosefrom.

Consequences

The Strategy pattern has the following benefits and drawbacks:

27

Saturday, July 14, 12

Seventh step : Form Template Method
class Statement(object):
 def value(self, customer):
 raise NotImplementedError

class TextStatement(Statement):
 def value(self, customer):
 result = 'Rental Record for %s\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += 'Amount owed is %.1f\n' % (customer.get_total_charge())
 result += 'You earned %d frequent renter points' % \
 (customer.get_total_frequent_renter_points())
 return result

class HtmlStatement(Statement):
 def value(self, customer):
 result = '<h1>Rentals for %s</h1><p>\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += '%s : %.1f
\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += '<p>You owe %.1f<p>\n' % (customer.get_total_charge())
 result += 'On this rental you earned %d frequent renter points<p>' % \
 (customer.get_total_frequent_renter_points())
 return result

28

Saturday, July 14, 12

Seventh step : Form Template Method

class Customer(object):
...
def html_statement(self):
 return HtmlStatement().value(self)

def statement(self):
 return TextStatement().value(self)

Now, we can separate the varying code from the similar code by using Extract
Method to extract the pieces that are different between the two methods.

29

Saturday, July 14, 12

Seventh step : Form Template Method

class TextStatement(Statement):
 def value(self, customer):
 result = 'Rental Record for %s\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += 'Amount owed is %.1f\n' % (customer.get_total_charge())
 result += 'You earned %d frequent renter points' % \
 (customer.get_total_frequent_renter_points())
 return result

class HtmlStatement(Statement):
 def value(self, customer):
 result = '<h1>Rentals for %s</h1><p>\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += '%s : %.1f
\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += '<p>You owe %.1f<p>\n' % (customer.get_total_charge())
 result += 'On this rental you earned %d frequent renter points<p>' % \
 (customer.get_total_frequent_renter_points())
 return result

30

Saturday, July 14, 12

Seventh step : Form Template Method

class TextStatement(Statement):
 def value(self, customer):
 result = 'Rental Record for %s\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += 'Amount owed is %.1f\n' % (customer.get_total_charge())
 result += 'You earned %d frequent renter points' % \
 (customer.get_total_frequent_renter_points())
 return result

class HtmlStatement(Statement):
 def value(self, customer):
 result = '<h1>Rentals for %s</h1><p>\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += '%s : %.1f
\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += '<p>You owe %.1f<p>\n' % (customer.get_total_charge())
 result += 'On this rental you earned %d frequent renter points<p>' % \
 (customer.get_total_frequent_renter_points())
 return result

header

header

30

Saturday, July 14, 12

Seventh step : Form Template Method

class TextStatement(Statement):
 def value(self, customer):
 result = 'Rental Record for %s\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += 'Amount owed is %.1f\n' % (customer.get_total_charge())
 result += 'You earned %d frequent renter points' % \
 (customer.get_total_frequent_renter_points())
 return result

class HtmlStatement(Statement):
 def value(self, customer):
 result = '<h1>Rentals for %s</h1><p>\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += '%s : %.1f
\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += '<p>You owe %.1f<p>\n' % (customer.get_total_charge())
 result += 'On this rental you earned %d frequent renter points<p>' % \
 (customer.get_total_frequent_renter_points())
 return result

header

header

each rental

each rental

30

Saturday, July 14, 12

Seventh step : Form Template Method

class TextStatement(Statement):
 def value(self, customer):
 result = 'Rental Record for %s\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += 'Amount owed is %.1f\n' % (customer.get_total_charge())
 result += 'You earned %d frequent renter points' % \
 (customer.get_total_frequent_renter_points())
 return result

class HtmlStatement(Statement):
 def value(self, customer):
 result = '<h1>Rentals for %s</h1><p>\n' % (customer.name)
 for rental in customer.rentals:
 # show figures for this rental
 result += '%s : %.1f
\n' % (rental.movie.title, rental.get_charge())

 # add footer lines
 result += '<p>You owe %.1f<p>\n' % (customer.get_total_charge())
 result += 'On this rental you earned %d frequent renter points<p>' % \
 (customer.get_total_frequent_renter_points())
 return result

header

header

each rental

each rental

footer

footer
30

Saturday, July 14, 12

Seventh step : Form Template Method

class TextStatement(Statement):
 def value(self, customer):
 result = self.header_string(customer)
 for rental in customer.rentals:
 # show figures for this rental
 result += self.each_rental_string(rental)
 # add footer lines
 result += self.footer_string(customer)
 return result

 def header_string(self, customer):
 return 'Rental Record for %s\n' % (customer.name)

 def each_rental_string(self, rental):
 return ' %s %.1f\n' % (rental.movie.title, rental.get_charge())

 def footer_string(self, customer):
 return 'Amount owed is %.1f\n' % (customer.get_total_charge()) + \
 'You earned %d frequent renter points' % \
 (customer.get_total_frequent_renter_points())

31

Saturday, July 14, 12

Seventh step : Form Template Method

class HtmlStatement(Statement):
 def value(self, customer):
 result = self.header_string(customer)
 for rental in customer.rentals:
 # show figures for this rental
 result += self.each_rental_string(rental)
 # add footer lines
 result += self.footer_string(customer)
 return result

 def header_string(self, customer):
 return '<h1>Rentals for %s</h1><p>\n' % (customer.name)

 def each_rental_string(self, rental):
 return '%s : %.1f
\n' % (rental.movie.title, rental.get_charge())

 def footer_string(self, customer):
 return '<p>You owe %.1f<p>\n' % (customer.get_total_charge()) + \
 'On this rental you earned %d frequent renter points<p>' % \
 (customer.get_total_frequent_renter_points())

32

Saturday, July 14, 12

Seventh step : Form Template Method

class Statement(object):

 def value(self, customer):
 result = self.header_string(customer)
 for rental in customer.rentals:
 # show figures for this rental
 result += self.each_rental_string(rental)
 # add footer lines
 result += self.footer_string(customer)
 return result

 def header_string(self, customer):
 raise NotImplementedError

 def each_rental_string(self, rental):
 raise NotImplementedError

Finally, pull the value method from two
subclasses to their super class

33

Saturday, July 14, 12

Another Ugly Code

def get_charge(self):
 result = 0.0
 # determine amount for each line
 if self.movie.price_code == Movie.REGULAR:
 result += 2.0
 if self.days_rented > 2:
 result += (self.days_rented - 2) * 1.5
 elif self.movie.price_code == Movie.NEW_RELEASE:
 result += self.days_rented * 3
 elif self.movie.price_code == Movie.CHILDRENS:
 result += 1.5
 if self.days_rented > 3:
 result += (self.days_rented - 3) * 1.5
 return result

What are the problems of this code?

34

Saturday, July 14, 12

Another Ugly Code

• It is a bad idea to do a switch based on an attribute of another object. If you
must use a switch statement, it should be on your own data, not on someone
else's.

• Keeping getCharge in the Movie class has the least ripple effect from
adding new movie types or editing the existing ones.

35

Saturday, July 14, 12

Eighth step : Move Method
class Movie(object):
...
def get_charge(self, days_rented):
 result = 0.0
 if self.price_code == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.price_code == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.price_code == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.price_code == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

class Rental(object):
...
def get_charge(self):
 return self.movie.get_charge(self.days_rented)

def get_frequent_renter_points(self):
 return self.movie.get_frequent_renter_points(self.days_rented)

36

Saturday, July 14, 12

This code still be ugly (why?)

def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.price_code == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.price_code == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.price_code == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

This code performs 3 tasks depending on the type of the movie.

37

Saturday, July 14, 12

Can we have subclasses of movie?

 class Rental...
 int getFrequentRenterPoints() {
 if ((getMovie().getPriceCode() == Movie.NEW_RELEASE) && getDaysRented() > 1)
 return 2;
 else
 return 1;
 }

Class rental...
 int getFrequentRenterPoints() {
 return _movie.getFrequentRenterPoints(_daysRented);
 }
class movie...

 int getFrequentRenterPoints(int daysRented) {
 if ((getPriceCode() == Movie.NEW_RELEASE) && daysRented > 1)
 return 2;
 else
 return 1;
 }

At last … Inheritance

We have several types of movie that have different ways of answering the same question. This sounds like a job for
subclasses. We can have three subclasses of movie, each of which can have its own version of charge (Figure 1.14).

Figure 1.14. Using inheritance on movie

This allows me to replace the switch statement by using polymorphism. Sadly it has one slight flaw—it doesn't work. A
movie can change its classification during its lifetime. An object cannot change its class during its lifetime. There is a
solution, however, the State pattern [Gang of Four]. With the State pattern the classes look like Figure 1.15.

Figure 1.15. Using the State pattern on movie

Safari | Refactoring: Improving the Design of Existing Code -> Replacing the Conditional Logic on Price Code with Polymorphism

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=15 (3 of 9) [6/2/2002 11:50:28 PM]

What happens if the movie type is changed?
Because an object cannot change its class during its lifetime.

38

Saturday, July 14, 12

Design Patterns : State

• Allow an object to alter its behavior when its internal state changes.The
object will appear to change its class.

• Structure

Design Patterns: Elements of Reusable Object-Oriented Software

339

The class TCPConnection maintains a state object (an instance of asubclass of
TCPState) that represents the current state of the TCPconnection. The class
TCPConnection delegates all state-specificrequests to this state object.
TCPConnection uses its TCPStatesubclass instance to perform operations particular
to the state of theconnection.

Whenever the connection changes state, the TCPConnection objectchanges the state
object it uses. When the connection goes fromestablished to closed, for example,
TCPConnection will replace itsTCPEstablished instance with a TCPClosed instance.

Applicability

Use the State pattern in either of the following cases:

• An object's behavior depends on its state, and it must change itsbehavior
at run-time depending on that state.

• Operations have large, multipart conditional statements that depend onthe
object's state. This state is usually represented by one or moreenumerated
constants. Often, several operations will contain thissame conditional
structure. The State pattern puts each branch of theconditional in a
separate class. This lets you treat the object'sstate as an object in its
own right that can vary independently fromother objects.

Structure

Participants

• Context (TCPConnection)
o defines the interface of interest to clients.
o maintains an instance of a ConcreteState subclass that defines

thecurrent state.

39

Saturday, July 14, 12

What is the different between State and Strategy?

• http://www.c-sharpcorner.com/UploadFile/rmcochran/
strategy_state01172007114905AM/strategy_state.aspx

• http://stackoverflow.com/questions/1658192/what-is-the-difference-
between-strategy-design-pattern-and-state-design-pattern

40

Saturday, July 14, 12

http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern

Using the State pattern on movie

By adding the indirection we can do the subclassing from the price code object and change the price whenever we need to.

If you are familiar with the Gang of Four patterns, you may wonder, "Is this a state, or is it a strategy?" Does the price
class represent an algorithm for calculating the price (in which case I prefer to call it Pricer or PricingStrategy), or does it
represent a state of the movie (Star Trek X is a new release). At this stage the choice of pattern (and name) reflects how
you want to think about the structure. At the moment I'm thinking about this as a state of movie. If I later decide a strategy
communicates my intention better, I will refactor to do this by changing the names.

To introduce the state pattern I will use three refactorings. First I'll move the type code behavior into the state pattern with
Replace Type Code with State/Strategy. Then I can use Move Method to move the switch statement into the price class.
Finally I'll use Replace Conditional with Polymorphism to eliminate the switch statement.

I begin with Replace Type Code with State/Strategy. This first step is to use Self Encapsulate Field on the type code to
ensure that all uses of the type code go through getting and setting methods. Because most of the code came from other
classes, most methods already use the getting method. However, the constructors do access the price code:

class Movie...
 public Movie(String name, int priceCode) {
 _name = name;
 _priceCode = priceCode;
 }

I can use the setting method instead.

class Movie
 public Movie(String name, int priceCode) {
 _name = name;
 setPriceCode(priceCode);
 }

I compile and test to make sure I didn't break anything. Now I add the new classes. I provide the type code behavior in the
price object. I do this with an abstract method on price and concrete methods in the subclasses:

 abstract class Price {
 abstract int getPriceCode();
 }
 class ChildrensPrice extends Price {
 int getPriceCode() {
 return Movie.CHILDRENS;
 }
 }
 class NewReleasePrice extends Price {

Safari | Refactoring: Improving the Design of Existing Code -> Replacing the Conditional Logic on Price Code with Polymorphism

http://safari.oreilly.com/main.asp?bookname=0201485672&snode=15 (4 of 9) [6/2/2002 11:50:28 PM]

41

Saturday, July 14, 12

Ninth step : Replace Type Code with State

• Self Encapsulate Field

• Movie Method

• Replace Conditional with Polymorphism

42

Saturday, July 14, 12

Self Encapsulate Field

class Price(object):
 def get_price_code(self):
 raise NotImplementedError

class ChildrensPrice(Price):
 def get_price_code(self):
 return Movie.CHILDRENS

class RegularPrice(Price):
 def get_price_code(self):
 return Movie.REGULAR

class NewReleasePrice(Price):
 def get_price_code(self):
 return Movie.NEW_RELEASE

43

Saturday, July 14, 12

Move Method

class Price(object):
...
def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.get_price_code() == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.get_price_code() == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.get_price_code() == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.get_price_code() == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

44

Saturday, July 14, 12

Move Method
class Movie(object):
...
@property
def price(self):
 return self._price

@price.setter
def price(self, price):
 self._price = price

@property
def price_code(self):
 return self._price.get_price_code()

@price_code.setter
def price_code(self, price_code):
 if price_code == Movie.REGULAR:
 self.price = RegularPrice()
 elif price_code == Movie.NEW_RELEASE:
 self.price = NewReleasePrice()
 elif price_code == Movie.CHILDRENS:
 self.price = ChildrensPrice()

def get_charge(self, days_rented):
 return self.price.get_charge(days_rented)

def get_frequent_renter_points(self, days_rented):
 return self.price.get_frequent_renter_points(days_rented)

45

Saturday, July 14, 12

Replace Conditional with Polymorphism

class Price(object):
...
def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.get_price_code() == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.get_price_code() == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.get_price_code() == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.get_price_code() == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

46

Saturday, July 14, 12

Replace Conditional with Polymorphism

class Price(object):
...
def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.get_price_code() == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.get_price_code() == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.get_price_code() == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.get_price_code() == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

RegularPrice

46

Saturday, July 14, 12

Replace Conditional with Polymorphism

class Price(object):
...
def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.get_price_code() == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.get_price_code() == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.get_price_code() == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.get_price_code() == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

RegularPrice

NewReleasePrice

46

Saturday, July 14, 12

Replace Conditional with Polymorphism

class Price(object):
...
def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.get_price_code() == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.get_price_code() == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.get_price_code() == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.get_price_code() == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

RegularPrice

NewReleasePrice

ChildrensPrice

46

Saturday, July 14, 12

Replace Conditional with Polymorphism

class Price(object):
...
def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.get_price_code() == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.get_price_code() == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.get_price_code() == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.get_price_code() == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

RegularPrice

NewReleasePrice

ChildrensPrice

NewReleasePrice

46

Saturday, July 14, 12

Replace Conditional with Polymorphism

class Price(object):
...
def get_charge(self, days_rented):
 result = 0.0
 # determine amount for each line
 if self.get_price_code() == Movie.REGULAR:
 result += 2.0
 if days_rented > 2:
 result += (days_rented - 2) * 1.5
 elif self.get_price_code() == Movie.NEW_RELEASE:
 result += days_rented * 3
 elif self.get_price_code() == Movie.CHILDRENS:
 result += 1.5
 if days_rented > 3:
 result += (days_rented - 3) * 1.5
 return result

def get_frequent_renter_points(self, days_rented):
 if self.get_price_code() == Movie.NEW_RELEASE and days_rented > 1:
 return 2
 else:
 return 1

RegularPrice

NewReleasePrice

ChildrensPrice

NewReleasePrice

Price

46

Saturday, July 14, 12

Replace Conditional with Polymorphism
class Price(object):
 ...
 def get_charge(self, days_rented):
 raise NotImplementedError

 def get_frequent_renter_points(self, days_rented):
 return 1

class ChildrensPrice(Price):
 ...
 def get_charge(self, days_rented):
 return 1.5+(days_rented-3)*1.5 if days_rented > 3 else 1.5

class RegularPrice(Price):
 ...
 def get_charge(self, days_rented):
 return 2.0+(days_rented-2)*1.5 if days_rented > 2 else 2.0

class NewReleasePrice(Price):
 ...
 def get_frequent_renter_points(self, days_rented):
 return 2 if days_rented > 1 else 1

 def get_charge(self, days_rented):
 return days_rented * 3

47

Saturday, July 14, 12

Class Diagram

48

Saturday, July 14, 12

Sequence Diagram

49

Saturday, July 14, 12

Principles in Refactoring

Saturday, July 14, 12

The Two Hats

• When you use refactoring to develop software, you divide your time between
two distinct activities:

• adding function

• When you add function, you shouldn't be changing existing code; you
are just adding new capabilities.

• refactoring

• When you refactor, you make a point of not adding function; you only
restructure the code.

Saturday, July 14, 12

Why Should You Refactor?

• Improves the design of software

• makes software easier to understand

• helps you find bugs

• helps you program faster

Saturday, July 14, 12

When Should You Refactor? : The Rule of Three

• Refactor when you add function

• if you have a hard time to add a new function, you need refactoring

• Refactor when you need to fix a bug

• if you do get a bug report, you need refactoring because the was not clear
enough for you to see there were a bug

• Refactor as you do a code review

• refactoring also helps the code review have more concrete rseults

Saturday, July 14, 12

When Shouldn’t You Refactor?

• When you should rewrite from scratch instead

• When you closed to a deadline

• unfinished refactoring as going into debt

Saturday, July 14, 12

