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Animation Pipeline
Keyframing Introduction

COMPUTER ANIMATION
15-497/15-861
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Producing an Animation

« Film runs at 24 frames per second (fps)

— That’s 1440 pictures to create per minute
— 1800 fpm for video (301ps)
* Productions issues:
— Need to stay organized for efficiency and cost reasons
— Need to create the frames systematically
o Artistic 1ssues:
— How to create the desired look and mood while conveying story?
— Artistic vision has to be converted into a sequence of still frames

— Not enough to get the stills right--must look right at full speed
» Hard to “*see” the motion given the stills
» Hard to “"see” the motion at the wrong frame rate

A lesson yvou will paintully learn 1n this class!

Computer Animation 15-497/15-861 2



Traditional Animation: The Process

Story board
— Sequence of drawings with descriptions
— Story-based description

Key Frames
— Draw a few important frames as line drawings
» For example. beginning of stride. end of stride

— Motion-based description

Inbetweens MY
— Draw the rest of the frames 3
— People who draw these don't get paid much

Pamnting
— Redraw onto acetate Cels. color them in

— These people get paid even less ,. . .
peopie get pe From http://www.anumationartgallery.com/

Computer Animation 15-497/15-861 3



Layered Motion

 It’s often usetul to have multiple layers of
animnation

— How to make an object move in front of a
background?

— Use one layer for background, one for object

— Can have multiple animators working
simultaneously on different layers. avoid re-
drawing and flickering

« Transparent acetate allows multiple )
[ T -
layers B L=
AR (4=
— Draw each separately D-JR B

— Stack them together on a copy stand

— Transfer onto film by taking a photograph of
the stack

From http://www.anumationartgallery.com/
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Computer-Assisted Animation

 Computerized Cel painting
—Digitize the line drawing, color 1t using seed fill
—Eliminates cel pamters (low rung on totem pole)
— Widely used in production (little hand painting any more)
—e.g. Lion King

« Cartoon Inbetweening

— Automatically interpolate between two drawings to produce
inbetweens (morphing)
—Hard to get right
» Inbetweens often don’t look natural
» what are the parameters to interpolate? Not clear...
» not used very often

Computer Animation 15-497/15-861 5



True Computer Animation

Generate the 1images by rendering a 3-D model

Vary the parameters to produce the animation

Brute torce

—Manually set the parameters for each and every frame

—For an » parameter model: /440n values per minute

 Computer keyframing

—Lead animators create the important frames with 3-D
computer models

—Unpaid computers draw the inbetweens

— The dominant production method

Computer Animation 15-497/15-861 6



Digital Production Pipeline

* Story

« Visual Development
 Character Design

« Storyboards
 Scene Layout

« Modeling
 Animation - Animatic

’
f’ff
-

 Shading and Texturing

« Lighting -

« Rendering

e Post Production

Computer Animation 15-497/15-861 7



Keyframing

COMPUTER ANIMATION
15-497/15-861
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Keyframing in 2D
 Highly skilled animator draws the important, or key
frames

* Less skilled (lower paid) animator draws the 1n-
between frames
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Keyframing in 3D

 Animator specifies the important key frames

 Computer generates the in-betweens
automatically using interpolation

* Rigid body motion 1sn’t nearly enough—even
for this sprite

Je £ g

¥¥ R
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What is a key?

 Hard to interpolate hand-drawn images

— Computers don’t help much

* The situation 1s different in computer animation:
— Each keyframe is a defined by a bunch of parameters (state)
— Sequence of keyframes = points in high-dimensional state space

« Computer inbetweening interpolates these points

Computer Animation 15-497/15-861 5



What is a key?

* For a bouncing ball?
—Position in 3D
—Orientation?

—Squishedness?

e foy O

In moving the circle (repre-
senting the ball) down and
back wup, ir was discovered
thar the ball would seem 1o

A i e L i g e i i e e TR

Bouncing
Ball

OO

QO

BESRED,

have more weight if the
drawings were closer to-
gether at the top and spaced
farther apart ar the bottom.

dﬂb dﬂb

Then, if the bottom drawing
was flartened, it gave the
appearance of bouncing.
Elongaring the drawings on
each side made it easter o

Sollow and gave more snap
to the action. Thus, the be-
ginnings of Sguash and
Stretch.
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What is a key?

* For a monster?
—Position and orientation 1n 3D
—Joint angles of the hierarchy
—Deformations?

—Facial features
—Hair/tur???
—Clothing???
 Scene elements?
—Lights
—Camera

= 2001 Disnvey/Pioor

Monster trailers. ..

Computer Animation 15-497/15-861 7



Keyframe Animation: Production Issues

« How to learn the craft?
—apprentice to an animator
—practice, practice, practice

e Pixar starts with animators, teaches them computers and
starts with computer folks and teaches them some art

« Gives good control over motion
 Eliminates much of the labor of traditional animation
—But still very labor-intensive

« Impractical for complex scenes with everything moving:
grass 1n the wind, water, and crowd scenes, for example

Computer Animation 15-497/15-861 27



params

Keyframing Basics

Despite the name, there aren’t really keyframes. per se.

For each variable. specify its value at the “important™ frames.
Not all variables need agree about which frames are important.

Hence, key values rather than key frames

Create path for each parameter by iterpolating key values

frames >
O - - P - > O < >
-« > D, - > O < > O | -
- > O - > O < > O *+—T1T*
O +—1—* O +1—* |O < > O
) rR :
O key values <+<— interpolated values

Computer Animation 15-497/15-861 9



Keyframing Recipe

* Specity the key frames

—r1g1d transforms, forward kinematics, mmverse
kinematics

* Specity the type of interpolation
—linear.,cubic, etc. parametric curves

* Specity the speed profile of the interpolation
—constant velocity, ease-1n,out, etc.

« Computer generates the in-between frames using this
information

Computer Animation 15-497/15-861 25



Splines for Interpolation

« (Classic example - a ball bouncing under gravity
— zero vertical velocity at start
— high downward velocity just before impact
— lower upward velocity after
— motion produced by fitting a smooth spline looks unnatural

« What kind of continuity/control do we need?

vV N\ g

Computer Animation 15-497/15-861 10



How Do You Interpolate Between Keys?
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Linear Interpolation

Using linear “‘arcs” between keyframes

start key x
\ where t, 1s the parameter value at the
r—t start of a segment, t, is the parameter value
x =x,+—2>(x, — Xx,) 1 -
: 0 "1 0 at the end of a segment and t is the

I, — E 0 ) parameter value for which you want to
find the position. x

total x distance between start and end

intermediate x . \
a portion of kev

Computer Animation 15-497/15-861 14



Cubic Curve Interpolation

« Like a thin strip that can be bent to interpolate the
points of interest

cubic curve
interpolation

Computer Animation 15-497/15-861 15



CS 445/ 645
Introduction to Computer Graphics

Lecture 22

Hermite Splines

UNIVERSITY
JVIRGINIA




Splines — Old School
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Representations of Curves

Use a sequence of points...
* Piecewise linear - does not accurately model a smooth line
* Tedious to create list of points

- Expensive to manipulate curve because all points must be
repositioned

Instead, model curve as piecewise-polynomial
« x=x(1), y=y(t), z=z(t)

— where x(), y(), z() are polynomials

UNIVERSITY
JVIRGINIA




SEeCif!ing Curves (hyperlink)

Control Points

» A set of points that influence the
curve’s shape

Knots
» Control points that lie on the curve

Interpolating Splines

« Curves that pass through the control
points (knots)

Approximating Splines
« Control points merely influence shape

Approximating

UNIVERSITY
JVIRGINIA




Parametric Curves

Very flexible representation

They are not required to be functions

» They can be multivalued with respect to any dimension

Never a
Function

AN

UNIVERSITY
JVIRGINIA




Cubic Polynomials

x(t) =at+bt?+c t+d,
 Similarly for y(t) and z(t)

Lett: (0<=t<=1)

LetT=[t2t?t 1]

Coefficient Matrix C

Curve: Q(t) = T*C

UNIVERSITY
JVIRGINIA




Piecewise Curve Segments

One curve constructed by connecting many
smaller segments end-to-end

* Must have rules for how the segments are joined

Continuity describes the joint

» Parametric continuity

« Geometric continuity

UNIVERSITY
JVIRGINIA




Parametric Continuity

» C, is tangent continuity (velocity)
« C, is 2" derivative continuity (acceleration)
» Matching direction and magnitude of d" / dt"

= Ch continous

Cy co ﬂlv—-\

Cy & Cy continuity Cy & Cy & C,continuity

~__/




Geometric Continuity

If positions match

« GO geometric continuity

If direction (but not necessarily magnitude) of tangent
matches

« G' geometric continuity

* The tangent value at the end of one curve is proportional to the
tangent value of the beginning of the next curve

UNIVERSITY
JVIRGINIA




Parametric Cubic Curves

In order to assure C, continuity, curves must be of
at least degree 3

Here is the parametric definition of a cubic
(degree 3) spline in two dimensions

How do we extend it to three dimensions?

3 2 |
x=at’' +bt'+ct+d,

3 2 .
y=a,t +bt +cit+d,

UNIVERSITY
JVIRGINIA




Parametric Cubic Splines

Can represent this as a matrix too

3 2,
x=at" +bt +ct+d,

3 7 .
y=a, + b}_,t +e,f+ d )




Coefficients

So how do we select the coefficients?

* [a, b, ¢, d,] and [a, b, ¢, d,] must satisfy the constraints
defined by the knots and the continuity conditions

UNIVERSITY
JVIRGINIA




Parametric Curves

Difficult to conceptualize curve as
x(t) =at3+bt’+c t+d,

(artists don’t think in terms of coefficients of cubics)

Instead, define curve as weighted combination of 4 well-

defined cubic polynomials
(wait a second! Artists don’t think this way either!)

Each curve type defines different cubic polynomials and

weighting schemes

UNIVERSITY
JVIRGINIA




Parametric Curves

Hermite — two endpoints and two endpoint
tangent vectors

Bezier - two endpoints and two other points that
define the endpoint tangent vectors

Splines — four control points
« C1 and C2 continuity at the join points

« Come close to their control points, but not guaranteed to
touch them

Examples of Splines

UNIVERSITY
JVIRGINIA




Hermite Cubic Splines

Hermite Specification

UNIVERSITY
JVIRGINIA




Hermite Cubic Splines ﬁ

One cubic curve for each dimension

A curve constrained to x/y-plane has two curves:

f(t) =at’>+bt’+ct+d () =et’+ fi’+gt+h
a

b
C
d

UNIVERSITY
JVIRGINIA




Hermite Cubic Splines

A 2-D Hermite Cubic Spline is defined by eight
parameters: a, b, c,d, e, f, g, h

How do we convert the intuitive endpoint constraints into
these (relatively) unintuitive eight parameters?

We know: | Vo,
* (X, y) positionatt =0, p, | /
* (X, y) positionatt=1, p, ;_.« P>
* (X, y) derivative at t = 0, dp/dt
- (x, y) derivative at t = 1, dp/dt Hermite Specification
UNIVERSITY
7VIRGINIA




Hermite Cubic Spline

We know:
* (X, y) positionatt =0, p,

£.(0) =a0®+b0*+cO0+d @/, (0) =e0+ f0°+g0+h

A

e
o> 0* o 1]’ o> 0> o 1]’
g
h

f(0)=d = p, £,00)=h=p,




Hermite Cubic Spline ﬁ

We know:

* (X,y)positionatt=1, p,

f£.() =al>+bl>+cl+d fo() =el’+ f1*+gl+h
A

:[13 12 1 1 =[13 17 1 1

fi(h)=a+b+c+d=p, f,()=e+f+g+h=p,




Hermite Cubic Splines ﬁ

So far we have four equations, but we have eight
unknowns

Use the derivatives

f(t)=at’> +bt’> +ct+d f,(t)=et’+ fi’+ gt +h
’ . 2 /
fo(t)=3at” +2bt +c fl(t)y=3et> +2 ft+g

=P 20 1 0




Hermite Cubic Spline

We know:

* (X, y) derivative at t = 0, dp/dt
£/(0) =3a0”>+2b0 +c f,(0) =3e0°+2f0 +¢g

:[3.()2 2.0 1 0 =[3-02 2-:0 1 0

UNIVERSITY
JVIRGINIA




Hermite Cubic Spline

We know:
* (X, y) derivative att = 1, dp/dt

£1() =3al>+2b1 +c fi) =3el’+2f1 +g

:[3.12 71 1 0 :[3-12 2:1 1 0

’ . _dpl/
fly=3a+2b+c=""/

' . _dl?lV
fr()=3e+2f+g= /s

UNIVERSITY
JVIRGINIA




Hermite Specification

Matrix equation for Hermite Curve

UNIVERSITY
JVIRGINIA




Solve Hermite Matrix

UNIVERSITY
JVIRGINIA




Spline and Geometry Matrices

M :
e Oyermite UNIVERSITY
T\IRGINIA




Resulting Hermite Spline Equation

UNIVERSITY
JVIRGINIA




Sample Hermite Curves

S\ IRGINIA



Blending Functions

By multiplying first two matrices in lower-left
equation, you have four functions of ‘t’ that
blend the four control parameters

/7

These are blending
functions




Hermite Blending Functions

If you plot the | |
blending ” Hermite Blending

] Functions
functions on

the parameter
ttl




Hermite Blending Functions

Remember, each

blending function
reflects influence
of P,, P,, AP,, AP,
on spline’s shape

Hermite Blending
Functions
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Splines - History

Draftsman use ‘ducks’ and
strips of wood (splines) to &
draw curves

Wood splines have second-
order continuity

And pass through the
conftrol points

E —

it onirve  UNIVERSITY
Ducks trace out curve SRAERT




Bézier Curves

Similar to Hermite, but more intuitive definition of
endpoint derivatives

Four control points, two of which are knots

/. support"

"chord"

Specification *

UNIVERSITY
JVIRGINIA




Bézier Curves

The derivative values of the Bezier Curve at the
knots are dependent on the adjacent points

The scalar 3 was selected just for this curve

UNIVERSITY
JVIRGINIA




Bézier vs. Hermite

Harmite




Bézier vs. Hermite

Y=43
UNIVERSITY
) J\IRGINIA
kel - 1 - 4 | -] A S




Bézier Basis and Geometry Matrices

Matrix Form

i _ : I ?
But why is Mg,,;,, @ good basis matrix: Upversrry




Bézier Blending Functions

Look at the blending
functions

This family of
polynomials is called
order-3 Bernstein
Polynomials
« C(3, k) tk (1-t)3k; 0<=k <=3
* They are all positive in interval [0,1]

* Their sum is equal to 1

UNIVERSITY
JVIRGINIA




Bézier Blending Functions

Thus, every point on curve is
linear combination of the Bezier Blending
control points Functions

The weights of the
combination are all positive

The sum of the weights is 1

Therefore, the curve is a
convex combination of the

control points UNIVERSITY
7VIRGINIA




Convex combination of control points

Will always remain within bounding region
(convex hull) defined by control points

Figure 10-34

Examples of two-dimensional Bézier curves generated from three, four, [ ] IVERSITY

and five control points. Dashed lines connect the control-point 0 IRGINIA
position




de Castlejau Algorithm

P

Find the point X on
the curve as a
function of
parameter {:

Po



de Castlejau Algorithm

P1

q, =Lerp(t.p,.p,)  po”

q, =L€I‘p(f.}pl__}p2)
q, =L€I‘p(]‘,}p2,}p3)

.. P3



de Castlejau Algorithm

- T
- S
o - . e
q[}__ - .
- * .
- , -
- [
u

r, =Lerp(r.q,.q,)
I = Lerp(!‘,}ql,}qz)

e



de Castlejau Algorithm

X = Lﬁ’fp(f.r 11{] ? l“1 )



Why more spline slides?

Bezier and Hermite splines have global influence

* One could create a Bezier curve that required 15 points to define the
curve...

— Moving any one control point would affect the entire curve

* Piecewise Bezier or Hermite don'’t suffer from this, but they don’t
enforce derivative continuity at join points

B-splines consist of curve segments whose polynomial
coefficients depend on just a few control points

* Local control

Examples of Splines

UNIVERSITY
JVIRGINIA




B-Spline Curve (cubic periodic)

Start with a sequence of control points

Select four from middle of sequence (p.,, p.1, s Pis,) d

- Bezier and Hermite goes between p., and p.,,

- B-Spline doesn'’t interpolate (touch) any of them but
approximates going through p., and p;

P1 .—34\ P: ’:
o
(7/ i t5\Q5.
03 P fo o
p t3 p t7
o p UNIVERSITY
4 TVIRGINIA




Uniform B-Splines

Approximating Splines
Approximates n+1 control points
- Py, Py ..., P,n>3
Curve consists of n —2 cubic polynomial segments
* Q3 Q4 ... Q
t varies along B-spline as Q;: t;<=t<t,,
t; (i = integer) are knot points that join segment Q; to Q;,,

Curve is uniform because knots are spaced at equal intervals of

parameter, t

UNIVERSITY
JVIRGINIA




Uniform B-Splines

First curve segment, Q;, is defined by first four
control points

Last curve segment, Q,_, is defined by last four
control points, P, ;, P,. ,, P, 4, P

m m m

Each control point affects four curve segments

UNIVERSITY
JVIRGINIA




B-spline Basis Matrix

Formulate 16 equations to solve the 16 unknowns

The 16 equations enforce the C,, C,, and C,
continuity between adjoining segments, Q

MB

1
—spline g

UNIVERSITY
JVIRGINIA




o-Spine e

Points along B-Spline are computed just as with
Bezier Curves




B-Spline

By far the most popular spline used

C, C,, and C, continuous

IVERSITY
7VIRGINIA




Nonuniform, Rational B-Splines
(NURBS)

The native geometry element in Maya

Models are composed of surfaces defined by
NURBS, not polygons

NURBS are smooth

NURBS require effort to make non-smooth

UNIVERSITY
JVIRGINIA




Converting Between Splines

Consider two spline basis formulations for two
spline types

UNIVERSITY
JVIRGINIA




Converting Between Splines

We can transform the control points from one
spline basis to another

UNIVERSITY
JVIRGINIA




Converting Between Splines

With this conversion, we can convert a B-Spline
into a Bezier Spline

Bezier Splines are easy to render

UNIVERSITY
JVIRGINIA




Rendering Splines

Horner’s Method
Incremental (Forward Difference) Method
Subdivision Methods

UNIVERSITY
JVIRGINIA




Horner’s Method

x()=a t>+b t' +c t+d.

x(t)=[(a t+b )t+c_ lt+d,

Three multiplications

Three additions

UNIVERSITY
JVIRGINIA




Forward Difference

X, =X, +Ax,

x,=a t +b t'+c t+d

X, =a_(t,+5) +b_(t, +5) +c (t, +5)+d,
X, —X, =Ax, =3a .0t +Ba_ 5> +2b.5)t, +(a .0’ +b 5> +c.5)

But this still is expensive to compute

 Solve for change at k (A,) and change at k+1 (A,.4)
 Boot strap with initial values for x,, Ay, and A,
« Compute x; by adding x, + Ay + A,

UNIVERSITY
JVIRGINIA




Subdivision Methods

After

Before
Subdivision Subdivision

Figure 10-52
Subdividing a cubic Bézier curve section into two
sections, each with four control points.

UNIVERSITY
JVIRGINIA




Rendering Bezier Spline

public void spline(ControlPoint p0, ControlPoint p1,
ControlPoint p2, ControlPoint p3, int pix) {
float len = ControlPoint.dist(p0,p1) + ControlPoint.dist(p1,p2)
+ ControlPoint.dist(p2,p3);
float chord = ControlPoint.dist(p0,p3);

if (Math.abs(len - chord) < 0.25f) return; Before

fatPixel(pix, p0.x, p0.y); Subdvision Subdivision
ControlPoint p11 = ControlPoint.midpoint(p0, p1); A e
ControlPoint tmp = ControlPoint.midpoint(p1, p2); Figure 10-5

ControlPoint p12 = ControlPoint.midpoint(p11, tmp);
ControlPoint p22 = ControlPoint.midpoint(p2, p3);
ControlPoint p21 = ControlPoint.midpoint(p22, tmp);
ControlPoint p20 = ControlPoint.midpoint(p12, p21);
spline(p20, p12, pl1, p0, pix);

spline(p3, p22, p21, p20, pix);

! UNIVERSITY
JVIRGINIA

Subdividing a cubic Bézier curve section into two
sections, each with four control points,




Orientation Representation
and Interpolation

Parent:
Chapter 2.2, 3.3
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Keyframing

« Last Class: how to interpolate positions/translations

* But we also need to orient things 1n 3D




Transformations (Review)

Translation, scaling, and rotation:

P =T+P Translation
P =SSP Scaling
P =RP Rotation

treat all transformations the same so that they can be
easily combined (streamline software and hardware)

P 1s a point of the model
Transformation 1s for animation, viewing, modeling

P’ 1s where 1t should be drawn



Homogenous Coordinates

* In graphics, we use homogenous coordinates for
transformations
« 4x4 matrix can be used to represent translation,
rotation, scaling, and other transformations
» We’re dealing with 3-space, so the 4% coordinate is
typically 1
Xy z

S W = [.T_., Vs 2, HJ] (‘Tﬁ Y, Z) — [Iﬁ Vs Z_.,l]
w w w




Translation

x+r. | |1 0 0 fo x
yv+i, B 0 | 0 (ol
Z+1. 1o 0 1 i |l z
1L ] [0 0 0 1]
4 f N
new point in transformation

y ot 1 space
SPE]CE matrix p pc






Rotation

In the upper left 3x3 submatrix

x’ 1 0 0 ol x
v 0 cosé —sin & 0f v
2 |o siné cosé 0 = X axis
1] 10 0 0 L1
("] [ cos@ 0 sin & 0 x|
1."F 0 ]_ 0 D .1
= Pe -
2| [-sin@ 0 cos@ 0f = Y axis
1] Lo 0 0 1 1]
(x| [coso —siné 0 o ]
v B sin & cos® 0 011
Z1 | o 0 1 ol - Z axis
| 1f [0 0 0 11



Composite Transformations

« We can now treat transformations as a series of matrix
multiplications

P’ =M, M, MM ,M.M_P
M =M M, MM MM,
P’ =MP




Back to Keyframing...
* In order to “move things” we need both translations
and rotations

« Interpolating the translations was easy but what about
rotations?



Interpolating Rotations

The upper left 3x3 submatrix of a transformation matrix 1s the
rotation matrix

Maybe we can just interpolate the entries of that matrix to get
the mbetween rotations?

Problem:

— Rows and columns are orthonormal (unit length and
perpendicular to each other)

— Linear mterpolation doesn’t maintain this property,
leading to nonsense for the mbetween rotations



Interpolating Rotation

Example:

—1nterpolate linearly from a positive 90 degree
rotation about y to a negative 90 degree rotation

about y
[ 0 0
0 l
-1 0

¥

Linearly interpolate each component and halfway between,

you get this. ..

No longer a rotation
matrix---not orthonormal
Makes no sense!



Orientation Representations
Direct interpolation of transformation matrices 1s not
acceptable. ..
Where does that leave us?

How best do we represent orientations of an object and
interpolate orientation to produce motion over time?

—Rotation Matrices
—Fixed Angle
—Euler Angle
—Axi1s Angle

—Quaternions



Fixed Angle Representation

« Angles used to rotate about tixed axes

 Orientations are specified by a set of 3 ordered
parameters that represent 3 ordered rotations about
fixed axes, 1.e. first about x, then y, then z

« Many possible orderings, don’t have to use all 3 axes,
but can’t do the same axis back to back



Fixed Angle

* A rotation of 10,45, 90 would be written as

—Rz(90) Ry(45), Rx(10) since we want to first
rotate about x, y, z. It would be applied then to the
pomt P.... RzZRyRx P

e Problem occurs when two of the axes of rotation line
up. Gimbal Lock



Gimbal Lock

-

y y
Gimbal Locked Gimbal

A Gimbal 1s a hardware implementation of Euler angles
(used for mounting gyroscopes, expensive globes)

Gimbal lock 1s a basic problem with representing 3-D
rotations using Euler angles or fixed angles



Gimbal Lock—Shown another way

« A 90 degree rotation about the y axis aligns the first
axis of mtatlon with the third.

I « X i
Rotx(0) Roty(90) Rotz(0)

« Incremental changes in X,z produce the same results
— lost a degree of freedom



Interpolating Rotations

Euler angles Axis-angle

QQ: What kind of compound
rotation do you get by
successively turning about

each of the 3 axes at a
constant rate?

A: Not the one you want



Example

« Especially a problem 1f interpolating say...

(0.90.0) . (90. 45, 90)

Just a 45 degree rotation from one orientation to the next,
so we expect 90, 22.5. 90, but get 45, 67.5, 45

}_-" }_." }_."
L"—» X i)_' < 4 . X
z 5 y
Initial Orientation )
(0.90,0) (90. 45, 90)

(object space)



Euler Angles

« Same as fixed axis, except now, the axes move with
the object
* roll, pitch, yaw of an aircraft

« Euler Angle rotations about moving axes written 1n
reverse order are the same as the fixed axis rotations.

R.(0)R (BYR.(})P=R.())R (BIR.(2)P

Euler Fixed

Same problem with Gimbal Lock



AXxis Angle

Euler’s Rotation Theorem:
Any orientation can be represented by a 4-tuple
— angle, vector(x.y,z) where the angle 1s the amount

to rotate by and the vector 1s the axis to rotate
about

« Can interpolate the angle and axis separately

&

e
A

-




Axis Angle Interpolation

B=A XA,

B = A %A,
¢ =cos” ( 4o 4, \
44l

A =R, (ko)A
6, =(1- k)6, + k6,



AXxis Angle

« Can interpolate the angle and axis separately

« No gimbal lock

« But, can’t efficiently compose rotations...must
convert to matrices first

Quaternions
* Good interpolation

* Can be multiplied (composed)

« No gimbal lock



Quaternions

* 4-tuple of real numbers
—S,X,V,Z Or [S,V]
—s 1s a scalar
—V 18 a vector

« Same information as axis/angle but 1n a different form

g =Rot,. . =|cos(6/2).sin(6/2)e(x,y,2)]



Quaternion Math
Addition:
s, v [ +]s, v, [ =1s, +5,,v,+v,]

Multiplication:

[31 ? 1';1] ‘ [SE.VE] = [51 S, =V, eV, S5V, + 5,V X Vz]]

Multiplication 1s not commutative but 1s associative
(Just like transformation matrices, as you would expect)

9.9, # 49,4,
(9,92)95 = 9,(4,95)



Quaternion Math
A point in space is represented as [0, V]

[1,(0,0,0)] multiplicative 1dentity

7

g~ =1/ [s,~v]

2 2 2 2
where |g||=+/s"+X +y +z

q- q‘l =[1,(0,0,0)] the umt length quaternion
(and multiplicative 1dentity)



Quaternion Rotation

To rotate a vector, v using quaternions
—represent the vector as [0,v]
—represent the rotation as a quaternion, q

q = Rof&(mlr‘:) =[cos(6/2),sm(6/2)-(x,y,z)]

v\ =Rot,(v)=q-v-q

Can compose rotations as well

Looks good so far...we can easily specity and compose
rotations!'



Quaternion Interpolation

« We can think of rotations as lying on an n-D unit sphere

N

3]
s

I 1

/ das

6,
\0, /TR
/ ; - /

l-angle (0) rotation 2-angle (8-0) rotation
(unit circle) (unit sphere)

* Interpolating rotations means moving on n-D sphere

—Can encode position on sphere by unit vector

—How about 3-angle rotations?



Quaternion Interpolation

Interpolating quaternions produces better results than Euler angles

A quaternion 1s a point on the 4-D unit sphere

— interpolating rotations requires a unit quaternion at each step - another point
on the 4-D sphere

— move with constant angular velocity along the great circle between the two
points

— Spherical Linear intERPolation (SLERPing)
Any rotation 1s given by 2 quaternions, so pick the shortest SLERP
To mterpolate more than two points:

— solve a non-linear variational constrained optimization (numerically)

Further information: Ken Shoemake 1n the Siggraph '85
proceedings (Computer Graphics, V. 19, No. 3, P.245)



Quaternion Interpolation

» Direct linear interpolation does not work

— Linearly interpolated intermediate points are not uniformly spaced
when projected onto the circle

» Use a special interpolation technique

— Spherical linear interpolation
— viewed as interpolating over the surface of a sphere

slerp(ql,q2,u)
= ((sm((1-u)-0))/(snB))-q, + (sm(u-0))/(s;nb)-q,

» Normalize to regain unit quaternion



Two Representations of a Rotation

A quaternion and its negation [-s.-v] represent the same rotation:
—q=Rot 4 . .

=[cos(—60/2).sin(-0/2) —(x,y,2)]
=[cos(@/2),—sm(0/2)-—(x,y,z)]
=[cos(6/2),sm(B/2)-(x,y.2)]

= Rot

H.(x,v.2)

=9
Have to go the short way around!

cos(6)=qg,®q, =s,5, +v, eV,
if cos(8) >0 = ¢, — ¢, shorter

else g, = —q, shorter



Quaternion Interpolation

« As in linear mterpolation in Euclidean space, we can have first
order discontinuity

Solution 1s to formulate a cubic curve
interpolation—see book for details



Quaternion Rotation

The rotation matrix corresponding to a quaternion,q, 1s
q = ROIH.(.T.}-‘.:)

=[cos(8/2),sin(8/2)- (x, y,2)]
— [9; a, b, C]

(1-2b% —2¢ 2ab + 2sc 2ac—2sb
2ab-2sc 1-2a’ =2¢° 2bc + 2sc
2ac+ 2sbh 2bc — 2sa 1—2a% —2b°




Rotations in Reality

« We can convert to/from any of these representations
—but the mapping 1s not one-to-one

* Choose the best representation for the task
—1nput: Euler angles
—1interpolation: quaternions

—composing rotations: quaternions, orientation
matrix

—drawing: ortentation matrix



Problems with Interpolation

« Splines don’t always do the right thing

* Classic problems

—Important constraints may break between keytrames
» feet sink through the floor
» hands pass through walls

— 3D rotations
» Euler angles don’t always interpolate in a natural way

 Solutions:
—More keyframes!

—Quaternions help fix rotation problems



Summary of Keyframing
We know how to move points in 3D — translation and
rotation
So we can set keyframes — position, orientation

We can describe interpolation methods — linear, cubic
polynomial

We can control interpolation speed with speed curves
and arclength reparameterization
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Slerp

e adraruau slerp Tnamssidunu

* aunAdnazAuan slerp(qg,q,,o) Tnaliien oL aninauises
a1n 0 09 1 dwsn plot quaternion ensnge Minmaw wnaglidngiu
' mad? 4

Feedniuiludu geodesic avpnduuunsanan 4 Aandunganeiy
do4as 4,
I & o/ o I 9 . a9|/ I =
* a1 o lusuenAunisudu geodesic i nanape
— o= 0 azegh q,
— o =1 azegn q,
— 1 oL = 0.5 azagnsananeszndng qg iy g, weh
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Slerp
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A0

g1 —
g2 =

slerp(qo, q1,1/3)

<
<

1:0,0,0

0:0,1,0
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