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Splines – Old School

DuckDuckDuckDuck
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Representations of Curves

Use a sequence of points…Use a sequence of points…

•• Piecewise linear Piecewise linear -- does not accurately model a smooth linedoes not accurately model a smooth line

•• Tedious to create list of pointsTedious to create list of points

•• Expensive to manipulate curve because all points must be Expensive to manipulate curve because all points must be 
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Specifying Curves (hyperlink)

Control PointsControl Points

•• A set of points that influence the A set of points that influence the 
curve’s shapecurve’s shape
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Parametric Curves

Very flexible representationVery flexible representation

They are not required to be functionsThey are not required to be functions
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Cubic Polynomials

x(t) = ax(t) = axxtt
33 + b+ bxxtt

22 + c+ cxxt + dt + dxx

•• Similarly for y(t) and z(t)Similarly for y(t) and z(t)

Let t: (0 <= t <= 1)Let t: (0 <= t <= 1)
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Coefficient Matrix CCoefficient Matrix C
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Piecewise Curve Segments

One curve constructed by connecting many One curve constructed by connecting many 

smaller segments endsmaller segments end--

•• Must have rules for how the segments are joinedMust have rules for how the segments are joined

One curve constructed by connecting many One curve constructed by connecting many 

smaller segments endsmaller segments end--

•• Must have rules for how the segments are joinedMust have rules for how the segments are joined

Continuity describes the jointContinuity describes the joint

•• Parametric continuityParametric continuity

•• Geometric continuityGeometric continuity

Continuity describes the jointContinuity describes the joint

•• Parametric continuityParametric continuity

•• Geometric continuityGeometric continuity

Piecewise Curve Segments

One curve constructed by connecting many One curve constructed by connecting many 

--toto--endend

Must have rules for how the segments are joinedMust have rules for how the segments are joined

One curve constructed by connecting many One curve constructed by connecting many 

--toto--endend

Must have rules for how the segments are joinedMust have rules for how the segments are joined

Continuity describes the jointContinuity describes the jointContinuity describes the jointContinuity describes the joint



Parametric Continuity
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Geometric Continuity 
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Parametric Cubic Curves

In order to assure CIn order to assure C22 continuity, curves must be of continuity, curves must be of 

at least degree 3at least degree 3

Here is the parametric definition of a cubic Here is the parametric definition of a cubic 

(degree 3) spline in two dimensions(degree 3) spline in two dimensions
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Parametric Cubic Splines

Can represent this as a matrix tooCan represent this as a matrix tooCan represent this as a matrix tooCan represent this as a matrix too
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Coefficients

So how do we select the coefficients?So how do we select the coefficients?

•• [a[axx bbxx ccxx ddxx] and [a] and [ayy bbyy ccyy ddyy] must satisfy the constraints ] must satisfy the constraints 

defined by the knots and the continuity conditionsdefined by the knots and the continuity conditions
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Parametric Curves

HermiteHermite –– two endpoints and two endpoint two endpoints and two endpoint 
tangent vectorstangent vectors
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Hermite Cubic Splines
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Hermite Cubic Splines

One cubic curve for each dimensionOne cubic curve for each dimension

A curve constrained to x/yA curve constrained to x/y

One cubic curve for each dimensionOne cubic curve for each dimension

A curve constrained to x/yA curve constrained to x/y

+++= dctbtattf )( 23

[ ]


















=

+++=

d

c

b

a

ttt

dctbtattf x

1

)(

23

23

Hermite Cubic Splines

One cubic curve for each dimensionOne cubic curve for each dimension

A curve constrained to x/yA curve constrained to x/y--plane has two curves:plane has two curves:

One cubic curve for each dimensionOne cubic curve for each dimension

A curve constrained to x/yA curve constrained to x/y--plane has two curves:plane has two curves:

+++= hgtftettf )( 23

[ ]


















=

+++=

h

g

f

e

ttt

hgtftettf y

1

)(

23

23



Hermite Cubic Splines

A 2A 2--D Hermite Cubic Spline is defined by eight D Hermite Cubic Spline is defined by eight 
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these (relatively) unintuitive eight parameters?these (relatively) unintuitive eight parameters?
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Hermite Cubic Spline
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•• (x, y) position at t = (x, y) position at t = 00, p, p11
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Hermite Cubic Spline

We know:We know:

•• (x, y) position at t = (x, y) position at t = 11, p, p22
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Hermite Cubic Splines

So far we have four equations, but we have eight So far we have four equations, but we have eight 

unknownsunknowns

Use the derivativesUse the derivatives
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Hermite Cubic Spline

We know:We know:

•• (x, y) derivative at t = 0, dp/dt(x, y) derivative at t = 0, dp/dt
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Hermite Cubic Spline

We know:We know:

•• (x, y) derivative at t = 1, dp/dt(x, y) derivative at t = 1, dp/dt
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Hermite Specification

Matrix equation for Hermite CurveMatrix equation for Hermite CurveMatrix equation for Hermite CurveMatrix equation for Hermite Curve
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Solve Hermite Matrix
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Spline and Geometry Matrices
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Resulting Hermite Spline EquationResulting Hermite Spline Equation



Sample Hermite CurvesSample Hermite Curves



Blending Functions

By multiplying first two matrices in lowerBy multiplying first two matrices in lower
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Hermite Blending Functions
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Hermite Blending Functions
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Splines - History
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A Duck (weight)

Ducks trace out curve



Bézier Curves

Similar to Hermite, but more intuitive definition of Similar to Hermite, but more intuitive definition of 
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Four control points, two of which are knotsFour control points, two of which are knots
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Bézier Curves

The derivative values of the Bezier Curve at the The derivative values of the Bezier Curve at the 

knots are dependent on the adjacent pointsknots are dependent on the adjacent points
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Bézier vs. Hermite

We can write our Bezier in terms of HermiteWe can write our Bezier in terms of Hermite

•• Note this is just matrix form of previous equationsNote this is just matrix form of previous equations
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Bézier vs. Hermite

Now substitute this in for previous HermiteNow substitute this in for previous HermiteNow substitute this in for previous HermiteNow substitute this in for previous Hermite
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Bézier Basis and Geometry Matrices

Matrix FormMatrix FormMatrix FormMatrix Form

But why is MBut why is MBezierBezier a good basis matrix?a good basis matrix?But why is MBut why is MBezierBezier a good basis matrix?a good basis matrix?

zier Basis and Geometry Matrices

a good basis matrix?a good basis matrix?a good basis matrix?a good basis matrix?



Bézier Blending Functions

Look at the blending Look at the blending 
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Bézier Blending Functions

Thus, every point on curve is Thus, every point on curve is 
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Convex combination of control points

Will always remain within bounding region Will always remain within bounding region 

(convex hull)(convex hull) defined by control pointsdefined by control points
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Why more spline slides?

Bezier and Hermite splines have global influenceBezier and Hermite splines have global influence

•• One could create a Bezier curve that required 15 points to define the One could create a Bezier curve that required 15 points to define the 
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–– Moving any one control point would affect the entire curveMoving any one control point would affect the entire curve

•• Piecewise Bezier or Hermite don’t suffer from this, but they don’t Piecewise Bezier or Hermite don’t suffer from this, but they don’t 
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B-Spline Curve (cubic periodic)

Start with a sequence of control pointsStart with a sequence of control points

Select four from middle of sequence Select four from middle of sequence 

•• Bezier and Hermite goes between pBezier and Hermite goes between p
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Uniform B-Splines

ApproximatingApproximating SplinesSplines

Approximates n+Approximates n+1 1 control pointscontrol points

•• PP00, P, P11, …, P, …, Pnn, n , n ≥≥ 33

Curve consists of n Curve consists of n ––2 2 cubic polynomial segmentscubic polynomial segments
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Uniform B-Splines

First curve segment, QFirst curve segment, Q33, is defined by first four , is defined by first four 
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Last curve segment, QLast curve segment, Qmm, is defined by last four , is defined by last four 
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B-spline Basis Matrix

Formulate 16 equations to solve the 16 unknownsFormulate 16 equations to solve the 16 unknowns
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B-Spline

Points along BPoints along B--Spline are computed just as with Spline are computed just as with 

Bezier CurvesBezier Curves

Points along BPoints along B--Spline are computed just as with Spline are computed just as with 

Bezier CurvesBezier Curves

( ) PUMtQ =( ) PUMtQ SplineBi −=

( ) [ ]









−

−

= 23

1

3

3

1

6

1
1i ttttQ

Spline are computed just as with Spline are computed just as with Spline are computed just as with Spline are computed just as with 




























−

−

+

+

+

3

2

1

014

0303

036

1331

i

i

i

i

p

p

p

p



B-Spline

By far the most popular spline usedBy far the most popular spline used

CC00, C, C11, and C, and C22 continuouscontinuous
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Nonuniform, Rational B

(NURBS)

The native geometry element in MayaThe native geometry element in Maya

Models are composed of surfaces defined by Models are composed of surfaces defined by 

NURBS, not polygonsNURBS, not polygons
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Converting Between Splines

Consider two spline basis formulations for two Consider two spline basis formulations for two 
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Converting Between Splines

We can transform the control points from one We can transform the control points from one 

spline basis to anotherspline basis to another
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Converting Between Splines

With this conversion, we can convert a BWith this conversion, we can convert a B
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Bezier Splines are easy to renderBezier Splines are easy to render
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Rendering Splines

Horner’s MethodHorner’s Method

Incremental (Forward Difference) MethodIncremental (Forward Difference) Method

Subdivision MethodsSubdivision Methods
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Forward Difference
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Rendering Bezier Spline

public void spline(ControlPoint p0, ControlPoint p1,

ControlPoint p2, ControlPoint p3, int pix) {

float len = ControlPoint.dist(p0,p1) + ControlPoint.dist(p1,p2)

+ ControlPoint.dist(p2,p3);

float chord = ControlPoint.dist(p0,p3);

if (Math.abs(len - chord) < 0.25f) return;if (Math.abs(len - chord) < 0.25f) return;

fatPixel(pix, p0.x, p0.y);

ControlPoint p11 = ControlPoint.midpoint(p0, p1);

ControlPoint tmp = ControlPoint.midpoint(p1, p2);

ControlPoint p12 = ControlPoint.midpoint(p11, tmp);

ControlPoint p22 = ControlPoint.midpoint(p2, p3);

ControlPoint p21 = ControlPoint.midpoint(p22, tmp);

ControlPoint p20 = ControlPoint.midpoint(p12, p21);

spline(p20, p12, p11, p0, pix);

spline(p3, p22, p21, p20, pix);

}

Rendering Bezier Spline

public void spline(ControlPoint p0, ControlPoint p1,

ControlPoint p2, ControlPoint p3, int pix) {

float len = ControlPoint.dist(p0,p1) + ControlPoint.dist(p1,p2)

ControlPoint p11 = ControlPoint.midpoint(p0, p1);

ControlPoint tmp = ControlPoint.midpoint(p1, p2);

ControlPoint p12 = ControlPoint.midpoint(p11, tmp);

ControlPoint p22 = ControlPoint.midpoint(p2, p3);

ControlPoint p21 = ControlPoint.midpoint(p22, tmp);

ControlPoint p20 = ControlPoint.midpoint(p12, p21);
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