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Kinematics

� Kinematics: The analysis of motion independent of 
physical forces. Kinematics deals with position, velocity, 
acceleration, and their rotational counterparts, 
orientation, angular velocity, and angular acceleration.

Forward Kinematics: The process of computing world � Forward Kinematics: The process of computing world 
space geometric data from DOFs

� Inverse Kinematics: The process of computing a set of 
DOFs that causes some world space goal to be met 
(I.e., place the hand on the door knob…)

� Note: Kinematics is an entire branch of mathematics and 
there are several other aspects of kinematics that don’t 
fall into the ‘forward’ or ‘inverse’ description



Skeletons

� Skeleton: A pose-able framework of joints 
arranged in a tree structure. The skeleton is 
used as an invisible armature to manipulate the 
skin and other geometric data of the characterskin and other geometric data of the character

� Joint: A joint allows relative movement within the 
skeleton. Joints are essentially 4x4 matrix 
transformations. Joints can be rotational, 
translational, or some non-realistic types as well

� Bone: Bone is really just a synonym for joint for 
the most part. For example, one might refer to 
the shoulder joint or upper arm bone (humerus) 
and mean the same thing



DOFs

� Degree of Freedom (DOF): A variable φ 
describing a particular axis or dimension of 
movement within a joint

� Joints typically have around 1-6 DOFs (φ1…φN)� Joints typically have around 1-6 DOFs (φ1…φN)

� Changing the DOF values over time results in 
the animation of the skeleton

� In later weeks, we will extend the concept of a 
DOF to be any animatable parameter within the 
character rig

� Note: in a mathematical sense, a free rigid body 
has 6 DOFs: 3 for position and 3 for rotation



Example Joint Hierarchy
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Joints

� Core Joint Data
� DOFs (N floats)

� Local matrix: L

� World matrix: W� World matrix: W

� Additional Data
� Joint offset vector: r

� DOF limits (min & max value per DOF)

� Type-specific data (rotation/translation axes, 
constants…)

� Tree data (pointers to children, siblings, parent…)



Skeleton Posing Process

1. Specify all DOF values for the skeleton (done by higher 
level animation system)

2. Recursively traverse through the hierarchy starting at Recursively traverse through the hierarchy starting at 
the root and use forward kinematics to compute the 
world matrices (done by skeleton system)

3. Use world matrices to deform skin & render (done by 
skin system)

Note: the matrices can also be used for other things such 
as collision detection, FX, etc.



Forward Kinematics

� In the recursive tree traversal, each joint first 
computes its local matrix L based on the values 
of its DOFs and some formula representative of 
the joint type:the joint type:

Local matrix L = Ljoint(φ1,φ2,…,φN)

� Then, world matrix W is computed by 
concatenating L with the world matrix of the 
parent joint

World matrix W = L · Wparent



Joint Offsets

� It is convenient to have a 3D offset vector 

r for every joint which represents its pivot 

point relative to its parent’s matrixpoint relative to its parent’s matrix
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DOF Limits

� It is nice to be able to limit a DOF to some 

range (for example, the elbow could be 

limited from 0º to 150º)limited from 0º to 150º)

� Usually, in a realistic character, all DOFs 

will be limited except the ones controlling 

the root



Skeleton Rigging

� Setting up the skeleton is an important and early 
part of the rigging process

� Sometimes, character skeletons are built before 
the skin, while other times, it is the oppositethe skin, while other times, it is the opposite

� To set up a skeleton, an artist uses an 
interactive tool to:
� Construct the tree

� Place joint offsets

� Configure joint types

� Specify joint limits

� Possibly more…



Poses

� Once the skeleton is set up, one can then adjust each of 
the DOFs to specify the pose of the skeleton

� We can define a pose Φ more formally as a vector of N 
numbers that maps to a set of DOFs in the skeleton

Φ = [φ1 φ2 … φN]

� A pose is a convenient unit that can be manipulated by a 
higher level animation system and then handed down to 
the skeleton

� Usually, each joint will have around 1-6 DOFs, but an 
entire character might have 100+ DOFs in the skeleton

� Keep in mind that DOFs can be also used for things 
other than joints, as we will learn later…



Joint Types



Joint Types

� Rotational
� Hinge: 1-DOF

� Universal: 2-DOF

� Ball & Socket: 3-DOF

� Compound
� Free

� Screw

� Constraint� Ball & Socket: 3-DOF
� Euler Angles

� Quaternions

� Translational
� Prismatic: 1-DOF

� Translational: 3-DOF 
(or any number)

� Constraint

� Etc.

� Non-Rigid
� Scale

� Shear

� Etc.

� Design your own...



Hinge Joints (1-DOF Rotational)
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Hinge Joints (1-DOF Rotational)
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� Rotation around the y-axis:
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Hinge Joints (1-DOF Rotational)
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� Rotation around the z-axis:
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Hinge Joints (1-DOF Rotational)

� Rotation around an arbitrary axis a:

( )=Ra θL
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Universal Joints (2-DOF)

� For a 2-DOF joint that first rotates around 
x and then around y:
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� Different matrices can be formed for 
different axis combinations
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Ball & Socket (3-DOF)

� For a 3-DOF joint that first rotates around 
x, y, then z:

 − 0ssccc

� Different matrices can be formed for 
different axis combinations
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Quaternions
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Prismatic Joints (1-DOF Translation)

� 1-DOF translation along an arbitrary axis a:
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Translational Joints (3-DOF)

� For a more general 3-DOF translation:
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Other Joints

� Compound
� Free

� Screw

� Constraint

� Etc.

� Non-Rigid
� Scale (1 axis, 3 axis, volume preserving…)

� Shear

� Etc.



Skin
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Texture

� We may wish to ‘map’ various properties across the 
polygonal surface

� We can do this through texture mapping, or other more 
general mapping techniques

� Usually, this will require explicitly storing texture 
coordinate information at the vertices

� For higher quality rendering, we may combine several 
different maps in complex ways, each with their own 
mapping coordinates

� Related features include bump mapping, displacement 
mapping, illumination mapping…



Smooth Skin Algorithm



Weighted Blending & Averaging

� Weighted sum:
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Rigid Parts

� Robots and mechanical creatures can usually 
be rendered with rigid parts and don’t require a 
smooth skin

� To render rigid parts, each part is transformed � To render rigid parts, each part is transformed 
by its joint matrix independently

� In this situation, every vertex of the character’s 
geometry is transformed by exactly one matrix

where v is defined in joint’s local space

Wvv ⋅=′



Simple Skin

� A simple improvement for low-medium quality 

characters is to rigidly bind a skin to the 

skeleton. This means that every vertex of the 

continuous skin mesh is attached to a joint.continuous skin mesh is attached to a joint.

� In this method, as with rigid parts, every vertex 

is transformed exactly once and should 

therefore have similar performance to rendering 

with rigid parts.

Wvv ⋅=′



Smooth Skin

� With the smooth skin algorithm, a vertex can be 
attached to more than one joint with adjustable 
weights that control how much each joint affects 
itit

� Verts rarely need to be attached to more than 
three joints

� Each vertex is transformed a few times and the 
results are blended

� The smooth skin algorithm has many other 
names: blended skin, skeletal subspace 
deformation (SSD), multi-matrix skin, matrix 
palette skinning…



Smooth Skin Algorithm

� The deformed vertex position is a 

weighted average:
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Binding Matrices

� With rigid parts or simple skin, v can be defined local to 

the joint that transforms it

� With smooth skin, several joints transform a vertex, but it 

can’t be defined local to all of themcan’t be defined local to all of them

� Instead, we must first transform it to be local to the joint 

that will then transform it to the world

� To do this, we use a binding matrix B for each joint that 

defines where the joint was when the skin was attached 

and premultiply its inverse with the world matrix:

iii WBM ⋅= −1



Normals

� To compute shading, we need to 
transform the normals to world space also

� Because the normal is a direction vector, 
we don’t want it to get the translation from we don’t want it to get the translation from 
the matrix, so we only need to multiply the 
normal by the upper 3x3 portion of the 
matrix

� For a normal bound to only one joint:

Wnn ⋅=′



Normals

� For smooth skin, we must blend the normal as 

with the positions, but the normal must then be 

renormalized:
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� If the matrices have non-rigid transformations, 

then technically, we should use:
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Algorithm Overview

Skin::Update() (view independent processing)

� Compute skinning matrix for each joint: M=B-1·W (you can 
precompute and store B-1 instead of B)

� Loop through vertices and compute blended position & normal

Skin::Draw() (view dependent processing)

� Set matrix state to Identity (world)

� Loop through triangles and draw using world space positions & 
normals

Questions:

- Why not deal with B in Skeleton::Update() ?

- Why not just transform vertices within Skin::Draw() ?



Rig Data Flow

� Input DOFs [ ]Nφφφ ...21=Φ

� Rigging system

(skeleton, skin…)

� Output renderable mesh

(vertices, normals…)

nv ′′,

Rig



Skeleton Forward Kinematics

� Every joint computes a local matrix based on its DOFs 
and any other constants necessary (joint offsets…)

( )Njnt φφφ ,...,, 21LL =

� To find the joint’s world matrix, we compute the dot 
product of the local matrix with the parent’s world matrix

� Normally, we would do this in a depth-first order starting 
from the root, so that we can be sure that the parent’s 
world matrix is available when its needed

parentWLW ⋅=



Smooth Skin Algorithm
� The deformed vertex position is a weighted average over all of the 

joints that the vertex is attached to:

� W is a joint’s world matrix and B is a joint’s binding matrix that 
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describes where it’s world matrix was when it was attached to the 

skin model (at skin creation time)

� Each joint transforms the vertex as if it were rigidly attached, and 

then those results are blended based on user specified weights

� All of the weights must add up to 1:

� Blending normals is essentially the same, except we transform them 

as direction vectors (x,y,z,0) and then renormalize the results
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Skinning Equations
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Using Skinning



Limitations of Smooth Skin

� Smooth skin is very simple and quite fast, but its 
quality is limited

� The main problems are:
� Joints tend to collapse as they bend more� Joints tend to collapse as they bend more

� Very difficult to get specific control

� Unintuitive and difficult to edit

� Still, it is built in to most 3D animation packages 
and has support in both OpenGL and Direct3D

� If nothing else, it is a good baseline upon which 
more complex schemes can be built



Limitations of Smooth Skin



Bone Links

� To help with the collapsing joint problem, one 
option is to use bone links

� Bone links are extra joints inserted in the 
skeleton to assist with the skinningskeleton to assist with the skinning

� They can be automatically added based on the 
joint’s range of motion. For example, they could 
be added so as to prevent any joint from rotating 
more than 60 degrees.

� This is a simple approach used in some real 
time games, but doesn’t go very far in fixing the 
other problems with smooth skin.



Shape Interpolation

� Another extension to the smooth skinning 
algorithm is to allow the verts to be modeled at 
key values along the joints motion

� For an elbow, for example, one could model it � For an elbow, for example, one could model it 
straight, then model it fully bent

� These shapes are interpolated local to the 
bones before the skinning is applied

� We will talk more about this technique in the 
next lecture



Muscles & Other Effects

� One can add custom effects such as muscle 
bulges as additional joints

� For example, the bicep could be a translational 
or scaling joint that smoothly controls some of 
the verts in the upper arm. Its motion could be 
or scaling joint that smoothly controls some of 
the verts in the upper arm. Its motion could be 
linked to the motion of the elbow rotation.

� With this approach, one can also use skin for 
muscles, fat bulges, facial expressions, and 
even simple clothing

� We will learn more about advanced skinning 
techniques in a later lecture



Rigging Process

� To rig a skinned character, one must have a geometric 
skin mesh and a skeleton

� Usually, the skin is built in a relatively neutral pose, often 
in a comfortable standing pose

� The skeleton, however, might be built in more of a zero
pose where the joints DOFs are assumed to be 0, 
causing a very stiff, straight pose

� To attach the skin to the skeleton, the skeleton must first 
be posed into a binding pose

� Once this is done, the verts can be assigned to joints 
with appropriate weights



Skin Binding

� Attaching a skin to a skeleton is not a trivial 
problem and usually requires automated tools 
combined with extensive interactive tuning

� Binding algorithms typically involve heuristic � Binding algorithms typically involve heuristic 
approaches

� Some general approaches:
� Containment

� Point-to-line mapping

� Delaunay tetrahedralization



Containment Binding

� With containment binding algorithms, the user manually 
approximates the body with volume primitives for each 
bone (cylinders, ellipsoids, spheres…)

� The algorithm then tests each vertex against the 
volumes and attaches it to the best fitting bonevolumes and attaches it to the best fitting bone

� Some containment algorithms attach to only one bone 
and then use smoothing as a second pass. Others 
attach to multiple bones directly and set skin weights

� For a more automated version, the volumes could be 
initially set based on the bone lengths and child 
locations



Point-to-Line Mapping

� A simple way to attach a skin is treat each 

bone as one or more line segments and 

attach each vertex to the nearest line attach each vertex to the nearest line 

segment

� A bone is made from line segments 

connecting the joint pivot to the pivots of 

each child



Delaunay Tetrahedralization

� This tricky computational geometry technique 

builds a tetrahedralization of the volume within 

the skin

The tetrahedra connect all of the skin verts and � The tetrahedra connect all of the skin verts and 

skeletal pivots in a relatively clean ‘Delaunay’ 

fashion

� The connectivity of the mesh can then be 

analyzed to determine the best attachment for 

each vertex



Skin Adjustment

� Mesh Smoothing: A joint will first be attached in a fairly 
rigid fashion (either automatic or manually) and then the 
weights are smoothed algorithmically

� Rogue Removal: Automatic identification and removal of 
isolated vertex attachmentsisolated vertex attachments

� Weight Painting: Some 3D tools allow visualization of the 
weights as colors (0…1 -> black…white). These can 
then be adjusted and ‘painted’ in an interactive fashion

� Direct Manipulation: These algorithms allow the vertex to 
be moved to a ‘correct’ position after the bone is bent, 
and automatically compute the weights necessary to get 
it there



Hardware Skinning

� The smooth skinning algorithm is simple 

and popular enough to have some direct 

support in 3D rendering hardwaresupport in 3D rendering hardware

� Actually, it just requires standard vector 

multiply/add operations and so can be 

implemented in microcode



Skin Memory Usage

� For each vertex, we need to store:
� Rendering data (position, normal, color, texture coords, 

tangents…)

� Skinning data (number of attachments, joint index, weight…)

� If we limit the character to having at most 256 bones, we 
can store a bone index as a bytecan store a bone index as a byte

� If we limit the weights to 256 distinct values, we can 
store a weight as a byte (this gives us a precision of 
0.004%, which is fine)

� If we assume that a vertex will attach to at most 4 bones, 
then we can compress the skinning data to (1+1)*4 =8 
bytes per vertex (64 bits)

� In fact, we can even squeeze another 8 bits out of that 
by not storing the final weight, since

w3 = 1 – w0 – w1 – w2



Inverse Kinematics (part 1)
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Welman, 1993

� “Inverse Kinematics and Geometric 

Constraints for Articulated Figure 

Manipulation”, Chris Welman, 1993Manipulation”, Chris Welman, 1993

� Masters thesis on IK algorithms

� Examines Jacobian methods and Cyclic 

Coordinate Descent (CCD)

� Please read sections 1-4 (about 40 pages)



Forward Kinematics

� The local and world matrix construction 

within the skeleton is an implementation of 

forward kinematicsforward kinematics

� Forward kinematics refers to the process 

of computing world space geometric 

descriptions (matrices…) based on joint 

DOF values (usually rotation angles 

and/or translations)



Kinematic Chains

� For today, we will limit our study to linear 

kinematic chains, rather than the more 

general hierarchies (i.e., stick with general hierarchies (i.e., stick with 

individual arms & legs rather than an 

entire body with multiple branching chains)



End Effector

� The joint at the root of the chain is sometimes 

called the base

� The joint (bone) at the leaf end of the chain is 

called the end effectorcalled the end effector

� Sometimes, we will refer to the end effector as 

being a bone with position and orientation, while 

other times, we might just consider a point on 

the tip of the bone and only think about it’s 

position



Forward Kinematics

� We will use the vector:

to represent the array of M joint DOF values

[ ]Mφφφ ...21=Φ

to represent the array of M joint DOF values

� We will also use the vector:

to represent an array of N DOFs that describe the end 
effector in world space. For example, if our end effector 
is a full joint with orientation, e would contain 6 DOFs: 3 
translations and 3 rotations. If we were only concerned 
with the end effector position, e would just contain the 3 
translations.

[ ]Neee ...21=e



Forward Kinematics

� The forward kinematic function f() 

computes the world space end effector 

DOFs from the joint DOFs:DOFs from the joint DOFs:

( )Φe f=



Inverse Kinematics

� The goal of inverse kinematics is to compute the 

vector of joint DOFs that will cause the end 

effector to reach some desired goal state

In other words, it is the inverse of the forward � In other words, it is the inverse of the forward 

kinematics problem

( )eΦ
1−= f



Inverse Kinematics Issues

� IK is challenging because while f() may be 

relatively easy to evaluate, f-1() usually isn’t

� For one thing, there may be several possible 

solutions for Φ, or there may be no solutionssolutions for Φ, or there may be no solutions

� Even if there is a solution, it may require 

complex and expensive computations to find it

� As a result, there are many different approaches 

to solving IK problems



Analytical vs. Numerical Solutions

� One major way to classify IK solutions is into 
analytical and numerical methods

� Analytical methods attempt to mathematically 
solve an exact solution by directly inverting the solve an exact solution by directly inverting the 
forward kinematics equations. This is only 
possible on relatively simple chains.

� Numerical methods use approximation and 
iteration to converge on a solution. They tend to 
be more expensive, but far more general 
purpose.

� Today, we will examine a numerical IK 
technique based on Jacobian matrices



Calculus Review



Derivative of a Scalar Function

� If we have a scalar function f of a single 

variable x, we can write it as f(x)

� The derivative of the function with respect � The derivative of the function with respect 

to x is df/dx

� The derivative is defined as:
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Derivative of a Scalar Function
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Derivative of f(x)=x2
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Exact vs. Approximate

� Many algorithms require the computation of derivatives

� Sometimes, we can compute analytical derivatives. For 

example:

( ) x
df

xxf 2      2 ==

� Other times, we have a function that’s too complex, and 

we can’t compute an exact derivative

� As long as we can evaluate the function, we can always 

approximate a derivative

( ) x
dx

df
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Approximate Derivative
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Nearby Function Values

� If we know the value of a function and its 

derivative at some x, we can estimate what the 

value of the function is at other points near x
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Finding Solutions to f(x)=0

� There are many mathematical and 
computational approaches to finding 
values of x for which f(x)=0

One such way is the gradient descent� One such way is the gradient descent
method

� If we can evaluate f(x) and df/dx for any 
value of x, we can always follow the 
gradient (slope) in the direction towards 0



Gradient Descent

� We want to find the value of x that causes f(x) to 
equal 0

� We will start at some value x0 and keep taking 
small steps:small steps:

xi+1 = xi + ∆x

until we find a value xN that satisfies f(xN)=0

� For each step, we try to choose a value of ∆x 
that will bring us closer to our goal

� We can use the derivative as an approximation 
to the slope of the function and use this 
information to move ‘downhill’ towards zero



Gradient Descent

f-axis

f(xi)

df/dx

x-axisxi



Minimization

� If  f(xi) is not 0, the value of f(xi) can be thought of as an 
error. The goal of gradient descent is to minimize this 
error, and so we can refer to it as a minimization
algorithm

Each step ∆x we take results in the function changing its � Each step ∆x we take results in the function changing its 
value. We will call this change ∆f.

� Ideally, we could have ∆f = -f(xi). In other words, we 
want to take a step ∆x that causes ∆f to cancel out the 
error

� More realistically, we will just hope that each step will 
bring us closer, and we can eventually stop when we get 
‘close enough’

� This iterative process involving approximations is 
consistent with many numerical algorithms



Choosing ∆x Step

� If we have a function that varies heavily, 

we will be safest taking small steps

� If we have a relatively smooth function, we � If we have a relatively smooth function, we 

could try stepping directly to where the 

linear approximation passes through 0



Choosing ∆x Step

� If we want to choose ∆x to bring us to the 

value where the slope passes through 0, we can 

use:
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Gradient Descent
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Solving  f(x)=g

� If we don’t want to find where a function 

equals some value ‘g’ other than zero, we 

can simply think of it as minimizing f(x)-g can simply think of it as minimizing f(x)-g 

and just step towards g:
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Gradient Descent for f(x)=g
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Taking Safer Steps

� Sometimes, we are dealing with non-smooth functions 

with varying derivatives

� Therefore, our simple linear approximation is not very 

reliable for large values of ∆xreliable for large values of ∆x

� There are many approaches to choosing a more 

appropriate (smaller) step size

� One simple modification is to add a parameter β to scale 

our step (0≤ β ≤1)
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Inverse of the Derivative

� By the way, for scalar derivatives:
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Gradient Descent Algorithm
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Stopping the Descent

� At some point, we need to stop iterating

� Ideally, we would stop when we get to our goal

� Realistically, we will stop when we get to within Realistically, we will stop when we get to within 

some acceptable tolerance

� However, occasionally, we may get ‘stuck’ in a 

situation where we can’t make any small step 

that takes us closer to our goal

� We will discuss some more about this later



Derivative of a Vector Function

� If we have a vector function r which 

represents a particle’s position as a 

function of time t:function of time t:
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Derivative of a Vector Function

� By definition, the derivative of position is 

called velocity, and the derivative of 

velocity is accelerationvelocity is acceleration
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Derivative of a Vector Function

•



Vector Derivatives

� We’ve seen how to take a derivative of a 

scalar vs. a scalar, and a vector vs. a 

scalarscalar

� What about the derivative of a scalar vs. a 

vector, or a vector vs. a vector?



Vector Derivatives

� Derivatives of scalars with respect to vectors 

show up often in field equations, used in exciting 

subjects like fluid dynamics, solid mechanics, 

and other physically based animation and other physically based animation 

techniques. If we are lucky, we’ll have time to 

look at these later in the quarter

� Today, however, we will be looking at 

derivatives of vector quantities with respect to 

other vector quantities



Jacobians

� A Jacobian is a vector derivative with respect to 
another vector

� If we have a vector valued function of a vector of 
variables f(x), the Jacobian is a matrix of partial variables f(x), the Jacobian is a matrix of partial 
derivatives- one partial derivative for each 
combination of components of the vectors

� The Jacobian matrix contains all of the 
information necessary to relate a change in any 
component of x to a change in any component 
of f

� The Jacobian is usually written as J(f,x), but you 
can really just think of it as df/dx



Jacobians
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Partial Derivatives

� The use of the ∂ symbol instead of d for 

partial derivatives really just implies that it 

is a single component in a vector is a single component in a vector 

derivative

� For many practical purposes, an individual 

partial derivative behaves like the 

derivative of a scalar with respect to 

another scalar



Jacobian Inverse Kinematics



Jacobians

� Let’s say we have a simple 2D robot arm 

with two 1-DOF rotational joints:

φ1

φ2

• e=[ex ey]



Jacobians

� The Jacobian matrix J(e,Φ) shows how 

each component of e varies with respect 

to each joint angleto each joint angle
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Jacobians

� Consider what would happen if we increased φ1

by a small amount. What would happen to e ?
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Jacobians

� What if we increased φ2 by a small amount?
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Jacobian for a 2D Robot Arm
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Jacobian Matrices

� Just as a scalar derivative df/dx of a 

function f(x) can vary over the domain of 

possible values for x, the Jacobian matrix possible values for x, the Jacobian matrix 

J(e,Φ) varies over the domain of all 

possible poses for Φ

� For any given joint pose vector Φ, we can 

explicitly compute the individual 

components of the Jacobian matrix



Jacobian as a Vector Derivative

( )
Φ

e
Φe

d

d
J =,

� Once again, sometimes it helps to think of:

( )
Φ

Φe
d

J =,

because J(e,Φ) contains all the 
information we need to know about how to 
relate changes in any component of Φ to 
changes in any component of e



Incremental Change in Pose

� Lets say we have a vector ∆Φ that 

represents a small change in joint DOF 

valuesvalues

� We can approximate what the resulting 

change in e would be:

( ) ΦJΦΦeΦ
Φ

e
e ∆⋅=∆⋅=∆⋅≈∆ ,J
d

d



Incremental Change in Effector

� What if we wanted to move the end 

effector by a small amount ∆e. What small 

change ∆Φ will achieve this?change ∆Φ will achieve this?

eJΦ

ΦJe

∆⋅≈∆

∆⋅≈∆

−1

:  so



Incremental Change in e

∆e

� Given some desired incremental change in end effector 

configuration ∆e, we can compute an appropriate 

incremental change in joint DOFs ∆Φ

φ2

•

φ1

eJΦ ∆⋅≈∆ −1
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Incremental Changes

� Remember that forward kinematics is a 
nonlinear function (as it involves sin’s and cos’s 
of the input variables)

� This implies that we can only use the Jacobian � This implies that we can only use the Jacobian 
as an approximation that is valid near the 
current configuration

� Therefore, we must repeat the process of 
computing a Jacobian and then taking a small 
step towards the goal until we get to where we 
want to be



End Effector Goals

� If Φ represents the current set of joint DOFs and 

e represents the current end effector DOFs, we 

will use g to represent the goal DOFs that we 

want the end effector to reachwant the end effector to reach



Choosing ∆e

� We want to choose a value for ∆e that will move e closer 
to g. A reasonable place to start is with

∆e = g - e

� We would hope then, that the corresponding value of ∆Φ
would bring the end effector exactly to the goal

� Unfortunately, the nonlinearity prevents this from 
happening, but it should get us closer

� Also, for safety, we will take smaller steps:

∆e = β(g - e)

where 0≤ β ≤1



Basic Jacobian IK Technique

while (e is too far from g) {

Compute J(e,Φ) for the current pose Φ

Compute J-1 // invert the Jacobian matrix

∆e = β(g - e) // pick approximate step to take∆e = β(g - e) // pick approximate step to take

∆Φ = J-1 · ∆e // compute change in joint DOFs

Φ = Φ + ∆Φ // apply change to DOFs

Compute new e vector // apply forward

// kinematics to see

// where we ended up

}



A Few Questions

� How do we compute J ?

� How do we invert J to compute J-1 ?

� How do we choose β (step size)� How do we choose β (step size)

� How do we determine when to stop the 

iteration?



Computing the Jacobian



Computing the Jacobian Matrix

� We can take a geometric approach to computing 
the Jacobian matrix

� Rather than look at it in 2D, let’s just go straight 
to 3Dto 3D

� Let’s say we are just concerned with the end 
effector position for now. Therefore, e is just a 
3D vector representing the end effector position 
in world space. This also implies that the 
Jacobian will be an 3xN matrix where N is the 
number of DOFs

� For each joint DOF, we analyze how e would 
change if the DOF changed



1-DOF Rotational Joints

� We will first consider DOFs that represents a rotation 
around a single axis (1-DOF hinge joint)

� We want to know how the world space position e will 
change if we rotate around the axis. Therefore, we will 
need to find the axis and the pivot point in world spaceneed to find the axis and the pivot point in world space

� Let’s say φi represents a rotational DOF of a joint. We 
also have the offset ri of that joint relative to it’s parent 
and we have the rotation axis ai relative to the parent as 
well

� We can find the world space offset and axis by 
transforming them by their parent joint’s world matrix



1-DOF Rotational Joints

� To find the pivot point and axis in world space:

parentiii −⋅=′ Waa

� Remember these transform as homogeneous 

vectors. r transforms as a position [rx ry rz 1] and 

a transforms as a direction [ax ay az 0]

parentiii −⋅=′ Wrr



Rotational DOFs

� Now that we have the axis and pivot point of the 

joint in world space, we can use them to find 

how e would change if we rotated around that 

axisaxis

� This gives us a column in the Jacobian matrix
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Rotational DOFs
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a’i: unit length rotation axis in world space

r’i: position of joint pivot in world space

e:  end effector position in world space
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3-DOF Rotational Joints

� For a 2-DOF or 3-DOF joint, it is actually a little trickier to 

get the world space axis

� Consider how we would find the world space x-axis of a 

3-DOF ball joint3-DOF ball joint

� Not only do we need to consider the parent’s world 

matrix, but we need to include the rotation around the 

next two axes (y and z-axis) as well

� This is because those following rotations will rotate the 

first axis itself



3-DOF Rotational Joints

� For example, assuming we have a 3-DOF ball joint that 
rotates in XYZ order:

[ ] ( ) ( ) parentzzyyi WRRa ⋅⋅⋅=′ 0001 θθ:dofx −

� Where Ry(θy) and Rz(θz) are y and z rotation matrices
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3-DOF Rotational Joints

� Remember that a 3-DOF XYZ ball joint’s local matrix will 

look something like this:

( ) ( ) ( ) ( ) ( )rTRRRL ⋅⋅⋅= zzyyxxzyx θθθθθθ ,,

� Where Rx(θx), Ry(θy), and Rz(θz) are x, y, and z rotation 

matrices, and T(r) is a translation by the (constant) joint 

offset

� So it’s world matrix looks like this:

( ) ( ) ( ) ( ) ( )rTRRRL ⋅⋅⋅= zzyyxxzyx θθθθθθ ,,

( ) ( ) ( ) ( ) parentzzyyxx WrTRRRW ⋅⋅⋅⋅= θθθ



3-DOF Rotational Joints

� Once we have each axis in world space, each 
one will get a column in the Jacobian matrix

� At this point, it is essentially handled as three   
1-DOF joints, so we can use the same formula 1-DOF joints, so we can use the same formula 
for computing the derivative as we did earlier:

� We repeat this for each of the three axes
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Quaternion Joints

� What about a quaternion joint? How do we 

incorporate them into our IK formulation?

� We will assume that a quaternion joint is 

capable of rotating around any axiscapable of rotating around any axis

� However, since we are trying to find a way to 

move e towards g, we should pick the best 

possible axis for achieving this 
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Quaternion Joints
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Quaternion Joints

� We compute ai’ directly in world space, so we don’t need 

to transform it

� Now that we have ai’, we can just compute the derivative 

the same way we would do with any other rotational axisthe same way we would do with any other rotational axis

� We must remember what axis we use, so that later, 

when we’ve computed ∆φi, we know how to update the 

quaternion
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Translational DOFs

� For translational DOFs, we start in the 

same way, namely by finding the 

translation axis in world spacetranslation axis in world space

� If we had a prismatic joint (1-DOF 

translation) that could translate along an 

arbitrary axis ai defined in the parent’s 

space, we can use:

parentiii −⋅=′ Waa



Translational DOFs

� For a more general 3-DOF translational joint that 
just translates along the local x, y, and z-axes, 
we don’t need to do the same thing that we did 
for rotationfor rotation

� The reason is that for translations, a change in 
one axis doesn’t affect the other axes at all, so 
we can just use the same formula and plug in 
the x, y, and z axes [1 0 0 0], [0 1 0 0], [0 0 1 0] 
to get the 3 world space axes

� Note: this will just return the a, b, and c axes of 
the parent’s world space matrix, and so we don’t 
actually have to compute them!



Translational DOFs

� As with rotation, each translational DOF is 

still treated separately and gets its own 

column in the Jacobian matrixcolumn in the Jacobian matrix

� A change in the DOF value results in a 

simple translation along the world space 

axis, making the computation trivial:
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Translational DOFs
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Building the Jacobian

� To build the entire Jacobian matrix, we just loop 
through each DOF and compute a 
corresponding column in the matrix

� If we wanted, we could use more elaborate joint � If we wanted, we could use more elaborate joint 
types (scaling, translation along a path, 
shearing…) and still compute an appropriate 
derivative

� If absolutely necessary, we could always resort 
to computing a numerical approximation to the 
derivative



Units & Scaling

� What about units?

� Rotational DOFs use radians and translational 
DOFs use meters (or some other measure of 
distance)distance)

� How can we combine their derivatives into the 
same matrix?

� Well, it’s really a bit of a hack, but we just 
combine them anyway

� If desired, we can scale any column to adjust 
how much the IK will favor using that DOF



Units & Scaling

� For example, we could scale all rotations by some 
constant that causes the IK to behave how we would like

� Also, we could use this as an additional way to get 
control over the behavior of the IK

� We can store an additional parameter for each DOF that 
defines how ‘stiff’ it should behave

� If we scale the derivative larger (but preserve direction), 
the solution will compensate with a smaller value for ∆φi, 
therefore making it act stiff

� There are several proposed methods for automatically 
setting the stiffness to a reasonable default value. They 
generally work based on some function of the length of 
the actual bone. The Welman paper talks about this.



End Effector Orientation



End Effector Orientation

� We’ve examined how to form the columns of a 
Jacobian matrix for a position end effector with 3 
DOFs

� How do we incorporate orientation of the end � How do we incorporate orientation of the end 
effector?

� We will add more DOFs to the end effector 
vector e

� Which method should we use to represent the 
orientation? (Euler angles? Quaternions?…)

� Actually, a popular method is to use the 3 DOF 
scaled axis representation!



Scaled Rotation Axis

� We learned that any orientation can be represented as a 
single rotation around some axis

� Therefore, we can store an orientation as an 3D vector

� The direction of the vector is the rotation axisThe direction of the vector is the rotation axis

� The length of the vector is the angle to rotate in 
radians

� This method has some properties that work well with the 
Jacobian approach

� Continuous and consistent

� No redundancy or extra constraints

� It’s also a nice method to store incremental changes 
in rotation



6-DOF End Effector

� If we are concerned about both the position and 
orientation of the end effector, then our e vector should 
contain 6 numbers

� But remember, we don’t actually need the e vector, we 
really just need the ∆e vectorreally just need the ∆e vector

� To generate ∆e, we compare the current end effector 
position/orientation (matrix E) to the goal 
position/orientation (matrix G)

� The first 3 components of ∆e represent the desired 
change in position: β(G.d - E.d)

� The next 3 represent a desired change in orientation, 
which we will express as a scaled axis vector



Desired Change in Orientation

� We want to choose a rotation axis that rotates E in to G

� We can compute this using some quaternions:

M=E-1·G

q.FromMatrix(M);q.FromMatrix(M);

� This gives us a quaternion that represents a rotation 
from E to G

� To extract out the rotation axis and angle, we just 
remember that:

� We can then scale the final axis by β
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End Effector

� So we now can define our goal with a matrix and 
come up with some desired change in end 
effector values that will bring us closer to that 
goal:goal:

� We must now compute a Nx6 Jacobian matrix, 
where each column represents how a particular 
DOF will affect both the position and orientation 
of the end effector

[ ]Tzyxzyx ttt θθθ ∆∆∆∆∆∆=∆e



Rotational DOFs

� We need to compute additional derivatives that show 
how the end effector orientation changes with respect to 
an incremental change in each DOF

� We will use the scaled axis to represent the incremental 
changechange

� For a rotational DOF, we first find the rotation axis in 
world space (as we did earlier)

� Then- we’re done! That axis already represents the 
incremental rotation caused by that DOF

� By default, the length of the axis should be 1, indicating 
that a change of 1 in the DOF value results in a rotation 
of 1 radian around the axis. We can scale this by a 
stiffness value if desired



Rotational DOFs

� The column in the Nx6 Jacobian matrix 
corresponding to a rotational DOF is:

( )[ ]  ′−×′
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∂
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� a’ is the rotation axis in world space

� r’ is the pivot point in world space

� epos is the position of the end effector in world 
space
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Translational DOFs

� Translational DOFs don’t affect the end 

effector orientation, so their contribution to 

the derivative of orientation will be [0 0 0]the derivative of orientation will be [0 0 0]
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Inverting the Jacobian Matrix



Inverting the Jacobian

� If the Jacobian is square (number of joint DOFs 
equals the number of DOFs in the end effector), 
then we might be able to invert the matrix

� Most likely, it won’t be square, and even if it is, � Most likely, it won’t be square, and even if it is, 
it’s definitely possible that it will be singular and 
non-invertable

� Even if it is invertable, as the pose vector 
changes, the properties of the matrix will change 
and may become singular or near-singular in 
certain configurations

� The bottom line is that just relying on inverting 
the matrix is not going to work



Underconstrained Systems

� If the system has more degrees of freedom in 

the joints than in the end effector, then it is likely 

that there will be a continuum of redundant 

solutions (i.e., an infinite number of solutions)solutions (i.e., an infinite number of solutions)

� In this situation, it is said to be underconstrained 

or redundant

� These should still be solvable, and might not 

even be too hard to find a solution, but it may be 

tricky to find a ‘best’ solution



Overconstrained Systems

� If there are more degrees of freedom in the end 
effector than in the joints, then the system is 
said to be overconstrained, and it is likely that 
there will not be any possible solutionthere will not be any possible solution

� In these situations, we might still want to get as 
close as possible

� However, in practice, overconstrained systems 
are not as common, as they are not a very 
useful way to build an animal or robot (they 
might still show up in some special cases 
though)



Well-Constrained Systems

� If the number of DOFs in the end effector equals 

the number of DOFs in the joints, the system 

could be well constrained and invertable

In practice, this will require the joints to be � In practice, this will require the joints to be 

arranged in a way so their axes are not 

redundant

� This property may vary as the pose changes, 

and even well-constrained systems may have 

trouble



Pseudo-Inverse

� If we have a non-square matrix arising 
from an overconstrained or 
underconstrained system, we can try 
using the pseudoinverse:using the pseudoinverse:

J*=(JTJ)-1JT

� This is a method for finding a matrix that 
effectively inverts a non-square matrix



Degenerate Cases

� Occasionally, we will get into a configuration that 

suffers from degeneracy

� If the derivative vectors line up, they lose their 

linear independence

•

linear independence



Single Value Decomposition

� The SVD is an algorithm that decomposes a 
matrix into a form whose properties can be 
analyzed easily

� It allows us to identify when the matrix is � It allows us to identify when the matrix is 
singular, near singular, or well formed

� It also tells us about what regions of the 
multidimensional space are not adequately 
covered in the singular or near singular 
configurations

� The bottom line is that it is a more sophisticated, 
but expensive technique that can be useful both 
for analyzing the matrix and inverting it



Jacobian Transpose

� Another technique is to simply take the 
transpose of the Jacobian matrix!

� Surprisingly, this technique actually works pretty 
wellwell

� It is much faster than computing the inverse or 
pseudo-inverse

� Also, it has the effect of localizing the 
computations. To compute ∆φi for joint i, we 
compute the column in the Jacobian matrix Ji as 
before, and then just use:

∆φi = Ji
T · ∆e



Jacobian Transpose

� With the Jacobian transpose (JT) method, we can just 
loop through each DOF and compute the change to that 
DOF directly

� With the inverse (JI) or pseudo-inverse (JP) methods, 
we must first loop through the DOFs, compute and store we must first loop through the DOFs, compute and store 
the Jacobian, invert (or pseudo-invert) it, then compute 
the change in DOFs, and then apply the change

� The JT method is far friendlier on memory access & 
caching, as well as computations

� However, if one prefers quality over performance, the JP 
method might be better…



Iterating to the Solution



Iteration

� Whether we use the JI, JP, or JT method, 

we must address the issue of iteration 

towards the solutiontowards the solution

� We should consider how to choose an 

appropriate step size β and how to decide 

when the iteration should stop



When to Stop

� There are three main stopping conditions we 
should account for
� Finding a successful solution (or close enough)

� Getting stuck in a condition where we can’t improve � Getting stuck in a condition where we can’t improve 
(local minimum)

� Taking too long (for interactive systems)

� All three of these are fairly easy to identify by 
monitoring the progress of Φ

� These rules are just coded into the while() 
statement for the controlling loop



Finding a Successful Solution

� We really just want to get close enough within some 
tolerance

� If we’re not in a big hurry, we can just iterate until we get 
within some floating point error range

� Alternately, we could choose to stop when we get within 
some tolerance measurable in pixels

� For example, we could position an end effector to 0.1 
pixel accuracy

� This gives us a scheme that should look good and 
automatically adapt to spend more time when we are 
looking at the end effector up close (level-of-detail)



Local Minima

� If we get stuck in a local minimum, we have several 
options

� Don’t worry about it and just accept it as the best we 
can do

� Switch to a different algorithm (CCD…)

� Randomize the pose vector slightly (or a lot) and try 
again

� Send an error to whatever is controlling the end 
effector and tell it to try something else

� Basically, there are few options that are truly appealing, 
as they are likely to cause either an error in the solution 
or a possible discontinuity in the motion



Taking Too Long

� In a time critical situation, we might just 

limit the iteration to a maximum number of 

stepssteps

� Alternately, we could use internal timers to 

limit it to an actual time in seconds



Iteration Stepping

� Step size

� Stability

� Performance� Performance



Other IK Issues



Joint Limits

� A simple and reasonably effective way to handle joint 
limits is to simply clamp the pose vector as a final step in 
each iteration

� One can’t compute a proper derivative at the limits, as 
the function is effectively discontinuous at the boundarythe function is effectively discontinuous at the boundary

� The derivative going towards the limit will be 0, but 
coming away from the limit will be non-zero. This leads 
to an inequality condition, which can’t be handled in a 
continuous manner

� We could just choose whether to set the derivative to 0 
or non-zero based on a reasonable guess as to which 
way the joint would go. This is easy in the JT method, 
but can potentially cause trouble in JI or JP



Higher Order Approximation

� The first derivative gives us a linear 

approximation to the function

� We can also take higher order derivatives � We can also take higher order derivatives 

and construct higher order approximations 

to the function

� This is analogous to approximating a 

function with a Taylor series



Repeatability

� If a given goal vector g always generates the same pose 

vector Φ, then the system is said to be repeatable

� This is not likely to be the case for redundant systems 

unless we specifically try to enforce itunless we specifically try to enforce it

� If we always compute the new pose by starting from the 

last pose, the system will probably not be repeatable

� If, however, we always reset it to a ‘comfortable’ default 

pose, then the solution should be repeatable

� One potential problem with this approach however is that 

it may introduce sharp discontinuities in the solution



Multiple End Effectors

� Remember, that the Jacobian matrix relates each DOF 
in the skeleton to each scalar value in the e vector

� The components of the matrix are based on quantities 
that are all expressed in world space, and the matrix 
itself does not contain any actual information about the itself does not contain any actual information about the 
connectivity of the skeleton

� Therefore, we extend the IK approach to handle tree 
structures and multiple end effectors without much 
difficulty

� We simply add more DOFs to the end effector vector to 
represent the other quantities that we want to constrain

� However, the issue of scaling the derivatives becomes 
more important as more joints are considered



Multiple Chains

� Another approach to handling tree structures 
and multiple end effectors is to simply treat it as 
several individual chains

� This works for characters often, as we can � This works for characters often, as we can 
animate the body with a forward kinematic 
approach, and then animate each limb with IK 
by positioning the hand/foot as the end effector 
goal

� This can be faster and simpler, and actually offer 
a nicer way to control the character



Geometric Constraints

� One can also add more abstract geometric 
constraints to the system
� Constrain distances, angles within the skeleton

� Prevent bones from intersecting each other or the � Prevent bones from intersecting each other or the 
environment

� Apply different weights to the constraints to signify 
their importance

� Have additional controls that try to maximize the 
‘comfort’ of a solution

� Etc.

� Welman talks about this in section 5



Other IK Techniques

� Cyclic Coordinate Descent
� This technique is more of a trigonometric approach and is more 

heuristic. It does, however, tend to converge in fewer iterations 
than the Jacobian methods, even though each iteration is a bit 
more expensive. Welman talks about this method in section 4.2more expensive. Welman talks about this method in section 4.2

� Analytical Methods
� For simple chains, one can directly invert the forward kinematic 

equations to obtain an exact solution. This method can be very 
fast, very predictable, and precisely controllable. With some 
finesse, one can even formulate good analytical solvers for more 
complex chains with multiple DOFs and redundancy

� Other Numerical Methods
� There are lots of other general purpose numerical methods for 

solving problems that can be cast into f(x)=g format



Jacobian Method as a Black Box

� The Jacobian methods were not invented for 
solving IK. They are a far more general purpose 
technique for solving systems of non-linear 
equationsequations

� The Jacobian solver itself is a black box that is 
designed to solve systems that can be 
expressed as f(x)=g ( e(Φ)=g )

� All we need is a method of evaluating f and J for 
a given value of x to plug it into the solver

� If we design it this way, we could conceivably 
swap in different numerical solvers (JI, JP, JT, 
damped least-squares, conjugate gradient…)


