
Skeletons

CSE169: Computer Animation

Instructor: Steve Rotenberg

UCSD, Winter 2005

Kinematics

� Kinematics: The analysis of motion independent of
physical forces. Kinematics deals with position, velocity,
acceleration, and their rotational counterparts,
orientation, angular velocity, and angular acceleration.

Forward Kinematics: The process of computing world � Forward Kinematics: The process of computing world
space geometric data from DOFs

� Inverse Kinematics: The process of computing a set of
DOFs that causes some world space goal to be met
(I.e., place the hand on the door knob…)

� Note: Kinematics is an entire branch of mathematics and
there are several other aspects of kinematics that don’t
fall into the ‘forward’ or ‘inverse’ description

Skeletons

� Skeleton: A pose-able framework of joints
arranged in a tree structure. The skeleton is
used as an invisible armature to manipulate the
skin and other geometric data of the characterskin and other geometric data of the character

� Joint: A joint allows relative movement within the
skeleton. Joints are essentially 4x4 matrix
transformations. Joints can be rotational,
translational, or some non-realistic types as well

� Bone: Bone is really just a synonym for joint for
the most part. For example, one might refer to
the shoulder joint or upper arm bone (humerus)
and mean the same thing

DOFs

� Degree of Freedom (DOF): A variable φ
describing a particular axis or dimension of
movement within a joint

� Joints typically have around 1-6 DOFs (φ1…φN)� Joints typically have around 1-6 DOFs (φ1…φN)

� Changing the DOF values over time results in
the animation of the skeleton

� In later weeks, we will extend the concept of a
DOF to be any animatable parameter within the
character rig

� Note: in a mathematical sense, a free rigid body
has 6 DOFs: 3 for position and 3 for rotation

Example Joint Hierarchy

Root

Torso PelvisTorso

Neck

Pelvis

HipL HipR

Head ElbowL

WristL

ElbowR

WristR

KneeL

AnkleL

KneeR

AnkleR

ShoulderL ShoulderR

Joints

� Core Joint Data
� DOFs (N floats)

� Local matrix: L

� World matrix: W� World matrix: W

� Additional Data
� Joint offset vector: r

� DOF limits (min & max value per DOF)

� Type-specific data (rotation/translation axes,
constants…)

� Tree data (pointers to children, siblings, parent…)

Skeleton Posing Process

1. Specify all DOF values for the skeleton (done by higher
level animation system)

2. Recursively traverse through the hierarchy starting at Recursively traverse through the hierarchy starting at
the root and use forward kinematics to compute the
world matrices (done by skeleton system)

3. Use world matrices to deform skin & render (done by
skin system)

Note: the matrices can also be used for other things such
as collision detection, FX, etc.

Forward Kinematics

� In the recursive tree traversal, each joint first
computes its local matrix L based on the values
of its DOFs and some formula representative of
the joint type:the joint type:

Local matrix L = Ljoint(φ1,φ2,…,φN)

� Then, world matrix W is computed by
concatenating L with the world matrix of the
parent joint

World matrix W = L · Wparent

Joint Offsets

� It is convenient to have a 3D offset vector

r for every joint which represents its pivot

point relative to its parent’s matrixpoint relative to its parent’s matrix





















=

1

0100

0010

0001

zyx

offset

rrr

L

DOF Limits

� It is nice to be able to limit a DOF to some

range (for example, the elbow could be

limited from 0º to 150º)limited from 0º to 150º)

� Usually, in a realistic character, all DOFs

will be limited except the ones controlling

the root

Skeleton Rigging

� Setting up the skeleton is an important and early
part of the rigging process

� Sometimes, character skeletons are built before
the skin, while other times, it is the oppositethe skin, while other times, it is the opposite

� To set up a skeleton, an artist uses an
interactive tool to:
� Construct the tree

� Place joint offsets

� Configure joint types

� Specify joint limits

� Possibly more…

Poses

� Once the skeleton is set up, one can then adjust each of
the DOFs to specify the pose of the skeleton

� We can define a pose Φ more formally as a vector of N
numbers that maps to a set of DOFs in the skeleton

Φ = [φ1 φ2 … φN]

� A pose is a convenient unit that can be manipulated by a
higher level animation system and then handed down to
the skeleton

� Usually, each joint will have around 1-6 DOFs, but an
entire character might have 100+ DOFs in the skeleton

� Keep in mind that DOFs can be also used for things
other than joints, as we will learn later…

Joint Types

Joint Types

� Rotational
� Hinge: 1-DOF

� Universal: 2-DOF

� Ball & Socket: 3-DOF

� Compound
� Free

� Screw

� Constraint� Ball & Socket: 3-DOF
� Euler Angles

� Quaternions

� Translational
� Prismatic: 1-DOF

� Translational: 3-DOF
(or any number)

� Constraint

� Etc.

� Non-Rigid
� Scale

� Shear

� Etc.

� Design your own...

Hinge Joints (1-DOF Rotational)





 0001

� Rotation around the x-axis:

()





















−
=

1

0cossin0

0sincos0

0001

zyx

xx

xx

xRx

rrr

θθ
θθ

θL

Hinge Joints (1-DOF Rotational)





 − 0sin0cos yy θθ

� Rotation around the y-axis:

()



















 −

=

1

0cos0sin

0010

0sin0cos

zyx

yy

yy

yRy

rrr

θθ

θθ

θL

Hinge Joints (1-DOF Rotational)





 00sincos zz θθ

� Rotation around the z-axis:

()





















−
=

1

0100

00cossin

00sincos

zyx

zz

zz

zRz

rrr

θθ
θθ

θL

Hinge Joints (1-DOF Rotational)

� Rotation around an arbitrary axis a:

()=Ra θL





















−+−−+−

+−−+−−

−−+−−+

1

0)1()1()1(

0)1()1()1(

0)1()1()1(

22

22

22

zyx

zzxzyyzx

xzyyyzyx

yzxzyxxx

rrr

acasacaasacaa

sacaaacasacaa

sacaasacaaaca

θθθθθ

θθθθθ

θθθθθ

Universal Joints (2-DOF)

� For a 2-DOF joint that first rotates around
x and then around y:





 − 00 yy sc

� Different matrices can be formed for
different axis combinations

()





















−

−

=

1

0

0

00

,

zyx

yxxyx

yxxyx

yy

yxRxy

rrr

ccssc

cscss

sc

θθL

Ball & Socket (3-DOF)

� For a 3-DOF joint that first rotates around
x, y, then z:

 − 0ssccc

� Different matrices can be formed for
different axis combinations

()





















−+

+−

−

=

1

0

0

0

,,

zyx

yxzxzyxzxzyx

yxzxzyxzxzyx

yzyzy

zyxRxyz

rrr

cccssscsscsc

csccssssccss

ssccc

θθθL

Quaternions

[]wzyx qqqq=q

12222 =+++= wzyx qqqqq






=
2

cos
2

sin
2

sin
2

sin
θθθθ

zyx aaaq

()





















−−−+

+−−−

−+−−

=

1

02212222

02222122

02222221

22

22

22

zyx

yxxwzyywzx

xwzyzxzwyx

ywzxzwyxzy

Q

rrr

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qL

Prismatic Joints (1-DOF Translation)

� 1-DOF translation along an arbitrary axis a:





 0001

()













 ⋅+⋅+⋅+

=

1

0100

0010

zzyyxx

Ta

atratratr

tL

Translational Joints (3-DOF)

� For a more general 3-DOF translation:





 0001

()





















+++

=

1

0100

0010

0001

zzyyxx

Txyz

trtrtr

tL

Other Joints

� Compound
� Free

� Screw

� Constraint

� Etc.

� Non-Rigid
� Scale (1 axis, 3 axis, volume preserving…)

� Shear

� Etc.

Skin

CSE169: Computer Animation

Instructor: Steve Rotenberg

UCSD, Winter 2005

Texture

� We may wish to ‘map’ various properties across the
polygonal surface

� We can do this through texture mapping, or other more
general mapping techniques

� Usually, this will require explicitly storing texture
coordinate information at the vertices

� For higher quality rendering, we may combine several
different maps in complex ways, each with their own
mapping coordinates

� Related features include bump mapping, displacement
mapping, illumination mapping…

Smooth Skin Algorithm

Weighted Blending & Averaging

� Weighted sum:
0

=

=′

∑

∑
=i

iixwx

� Weighted average:

� Convex average: 10

1
0

≤≤

=∑
=

i

i

i

w

w

Rigid Parts

� Robots and mechanical creatures can usually
be rendered with rigid parts and don’t require a
smooth skin

� To render rigid parts, each part is transformed � To render rigid parts, each part is transformed
by its joint matrix independently

� In this situation, every vertex of the character’s
geometry is transformed by exactly one matrix

where v is defined in joint’s local space

Wvv ⋅=′

Simple Skin

� A simple improvement for low-medium quality

characters is to rigidly bind a skin to the

skeleton. This means that every vertex of the

continuous skin mesh is attached to a joint.continuous skin mesh is attached to a joint.

� In this method, as with rigid parts, every vertex

is transformed exactly once and should

therefore have similar performance to rendering

with rigid parts.

Wvv ⋅=′

Smooth Skin

� With the smooth skin algorithm, a vertex can be
attached to more than one joint with adjustable
weights that control how much each joint affects
itit

� Verts rarely need to be attached to more than
three joints

� Each vertex is transformed a few times and the
results are blended

� The smooth skin algorithm has many other
names: blended skin, skeletal subspace
deformation (SSD), multi-matrix skin, matrix
palette skinning…

Smooth Skin Algorithm

� The deformed vertex position is a

weighted average:

() () ()⋅+⋅+⋅=′ ...www MvMvMvv () () ()

()

∑

∑

=

⋅=′

⋅+⋅+⋅=′

1

...2211

i

ii

NN

w

where

w

or

www

Mvv

MvMvMvv

Binding Matrices

� With rigid parts or simple skin, v can be defined local to

the joint that transforms it

� With smooth skin, several joints transform a vertex, but it

can’t be defined local to all of themcan’t be defined local to all of them

� Instead, we must first transform it to be local to the joint

that will then transform it to the world

� To do this, we use a binding matrix B for each joint that

defines where the joint was when the skin was attached

and premultiply its inverse with the world matrix:

iii WBM ⋅= −1

Normals

� To compute shading, we need to
transform the normals to world space also

� Because the normal is a direction vector,
we don’t want it to get the translation from we don’t want it to get the translation from
the matrix, so we only need to multiply the
normal by the upper 3x3 portion of the
matrix

� For a normal bound to only one joint:

Wnn ⋅=′

Normals

� For smooth skin, we must blend the normal as

with the positions, but the normal must then be

renormalized:

()∑ ⋅w Mn

� If the matrices have non-rigid transformations,

then technically, we should use:

()
()∑

∑
⋅

⋅
=′

ii

ii

w

w

Mn

Mn
n

()
()∑

∑
−

−

⋅

⋅
=′

T

ii

T

ii

w

w

1

1

Mn

Mn
n

Algorithm Overview

Skin::Update() (view independent processing)

� Compute skinning matrix for each joint: M=B-1·W (you can
precompute and store B-1 instead of B)

� Loop through vertices and compute blended position & normal

Skin::Draw() (view dependent processing)

� Set matrix state to Identity (world)

� Loop through triangles and draw using world space positions &
normals

Questions:

- Why not deal with B in Skeleton::Update() ?

- Why not just transform vertices within Skin::Draw() ?

Rig Data Flow

� Input DOFs []Nφφφ ...21=Φ

� Rigging system

(skeleton, skin…)

� Output renderable mesh

(vertices, normals…)

nv ′′,

Rig

Skeleton Forward Kinematics

� Every joint computes a local matrix based on its DOFs
and any other constants necessary (joint offsets…)

()Njnt φφφ ,...,, 21LL =

� To find the joint’s world matrix, we compute the dot
product of the local matrix with the parent’s world matrix

� Normally, we would do this in a depth-first order starting
from the root, so that we can be sure that the parent’s
world matrix is available when its needed

parentWLW ⋅=

Smooth Skin Algorithm
� The deformed vertex position is a weighted average over all of the

joints that the vertex is attached to:

� W is a joint’s world matrix and B is a joint’s binding matrix that

∑ ⋅⋅=′ −
iiiw WBvv

1

describes where it’s world matrix was when it was attached to the

skin model (at skin creation time)

� Each joint transforms the vertex as if it were rigidly attached, and

then those results are blended based on user specified weights

� All of the weights must add up to 1:

� Blending normals is essentially the same, except we transform them

as direction vectors (x,y,z,0) and then renormalize the results

∑ =1iw

*

*
1* ,

n

n
nWBnn =′⋅⋅=∑ −

iiiw

Skinning Equations

()21 ,...,,

WLW

LL

⋅=

=

parent

Njnt φφφ� Skeleton

*

*

1*

1

n

n
n

WBnn

WBvv

=′

⋅⋅=

⋅⋅=′

∑
∑

−

−

iii

iii

w

w

� Skinning

Using Skinning

Limitations of Smooth Skin

� Smooth skin is very simple and quite fast, but its
quality is limited

� The main problems are:
� Joints tend to collapse as they bend more� Joints tend to collapse as they bend more

� Very difficult to get specific control

� Unintuitive and difficult to edit

� Still, it is built in to most 3D animation packages
and has support in both OpenGL and Direct3D

� If nothing else, it is a good baseline upon which
more complex schemes can be built

Limitations of Smooth Skin

Bone Links

� To help with the collapsing joint problem, one
option is to use bone links

� Bone links are extra joints inserted in the
skeleton to assist with the skinningskeleton to assist with the skinning

� They can be automatically added based on the
joint’s range of motion. For example, they could
be added so as to prevent any joint from rotating
more than 60 degrees.

� This is a simple approach used in some real
time games, but doesn’t go very far in fixing the
other problems with smooth skin.

Shape Interpolation

� Another extension to the smooth skinning
algorithm is to allow the verts to be modeled at
key values along the joints motion

� For an elbow, for example, one could model it � For an elbow, for example, one could model it
straight, then model it fully bent

� These shapes are interpolated local to the
bones before the skinning is applied

� We will talk more about this technique in the
next lecture

Muscles & Other Effects

� One can add custom effects such as muscle
bulges as additional joints

� For example, the bicep could be a translational
or scaling joint that smoothly controls some of
the verts in the upper arm. Its motion could be
or scaling joint that smoothly controls some of
the verts in the upper arm. Its motion could be
linked to the motion of the elbow rotation.

� With this approach, one can also use skin for
muscles, fat bulges, facial expressions, and
even simple clothing

� We will learn more about advanced skinning
techniques in a later lecture

Rigging Process

� To rig a skinned character, one must have a geometric
skin mesh and a skeleton

� Usually, the skin is built in a relatively neutral pose, often
in a comfortable standing pose

� The skeleton, however, might be built in more of a zero
pose where the joints DOFs are assumed to be 0,
causing a very stiff, straight pose

� To attach the skin to the skeleton, the skeleton must first
be posed into a binding pose

� Once this is done, the verts can be assigned to joints
with appropriate weights

Skin Binding

� Attaching a skin to a skeleton is not a trivial
problem and usually requires automated tools
combined with extensive interactive tuning

� Binding algorithms typically involve heuristic � Binding algorithms typically involve heuristic
approaches

� Some general approaches:
� Containment

� Point-to-line mapping

� Delaunay tetrahedralization

Containment Binding

� With containment binding algorithms, the user manually
approximates the body with volume primitives for each
bone (cylinders, ellipsoids, spheres…)

� The algorithm then tests each vertex against the
volumes and attaches it to the best fitting bonevolumes and attaches it to the best fitting bone

� Some containment algorithms attach to only one bone
and then use smoothing as a second pass. Others
attach to multiple bones directly and set skin weights

� For a more automated version, the volumes could be
initially set based on the bone lengths and child
locations

Point-to-Line Mapping

� A simple way to attach a skin is treat each

bone as one or more line segments and

attach each vertex to the nearest line attach each vertex to the nearest line

segment

� A bone is made from line segments

connecting the joint pivot to the pivots of

each child

Delaunay Tetrahedralization

� This tricky computational geometry technique

builds a tetrahedralization of the volume within

the skin

The tetrahedra connect all of the skin verts and � The tetrahedra connect all of the skin verts and

skeletal pivots in a relatively clean ‘Delaunay’

fashion

� The connectivity of the mesh can then be

analyzed to determine the best attachment for

each vertex

Skin Adjustment

� Mesh Smoothing: A joint will first be attached in a fairly
rigid fashion (either automatic or manually) and then the
weights are smoothed algorithmically

� Rogue Removal: Automatic identification and removal of
isolated vertex attachmentsisolated vertex attachments

� Weight Painting: Some 3D tools allow visualization of the
weights as colors (0…1 -> black…white). These can
then be adjusted and ‘painted’ in an interactive fashion

� Direct Manipulation: These algorithms allow the vertex to
be moved to a ‘correct’ position after the bone is bent,
and automatically compute the weights necessary to get
it there

Hardware Skinning

� The smooth skinning algorithm is simple

and popular enough to have some direct

support in 3D rendering hardwaresupport in 3D rendering hardware

� Actually, it just requires standard vector

multiply/add operations and so can be

implemented in microcode

Skin Memory Usage

� For each vertex, we need to store:
� Rendering data (position, normal, color, texture coords,

tangents…)

� Skinning data (number of attachments, joint index, weight…)

� If we limit the character to having at most 256 bones, we
can store a bone index as a bytecan store a bone index as a byte

� If we limit the weights to 256 distinct values, we can
store a weight as a byte (this gives us a precision of
0.004%, which is fine)

� If we assume that a vertex will attach to at most 4 bones,
then we can compress the skinning data to (1+1)*4 =8
bytes per vertex (64 bits)

� In fact, we can even squeeze another 8 bits out of that
by not storing the final weight, since

w3 = 1 – w0 – w1 – w2

Inverse Kinematics (part 1)

CSE169: Computer Animation

Instructor: Steve Rotenberg

UCSD, Winter 2005

Welman, 1993

� “Inverse Kinematics and Geometric

Constraints for Articulated Figure

Manipulation”, Chris Welman, 1993Manipulation”, Chris Welman, 1993

� Masters thesis on IK algorithms

� Examines Jacobian methods and Cyclic

Coordinate Descent (CCD)

� Please read sections 1-4 (about 40 pages)

Forward Kinematics

� The local and world matrix construction

within the skeleton is an implementation of

forward kinematicsforward kinematics

� Forward kinematics refers to the process

of computing world space geometric

descriptions (matrices…) based on joint

DOF values (usually rotation angles

and/or translations)

Kinematic Chains

� For today, we will limit our study to linear

kinematic chains, rather than the more

general hierarchies (i.e., stick with general hierarchies (i.e., stick with

individual arms & legs rather than an

entire body with multiple branching chains)

End Effector

� The joint at the root of the chain is sometimes

called the base

� The joint (bone) at the leaf end of the chain is

called the end effectorcalled the end effector

� Sometimes, we will refer to the end effector as

being a bone with position and orientation, while

other times, we might just consider a point on

the tip of the bone and only think about it’s

position

Forward Kinematics

� We will use the vector:

to represent the array of M joint DOF values

[]Mφφφ ...21=Φ

to represent the array of M joint DOF values

� We will also use the vector:

to represent an array of N DOFs that describe the end
effector in world space. For example, if our end effector
is a full joint with orientation, e would contain 6 DOFs: 3
translations and 3 rotations. If we were only concerned
with the end effector position, e would just contain the 3
translations.

[]Neee ...21=e

Forward Kinematics

� The forward kinematic function f()

computes the world space end effector

DOFs from the joint DOFs:DOFs from the joint DOFs:

()Φe f=

Inverse Kinematics

� The goal of inverse kinematics is to compute the

vector of joint DOFs that will cause the end

effector to reach some desired goal state

In other words, it is the inverse of the forward � In other words, it is the inverse of the forward

kinematics problem

()eΦ
1−= f

Inverse Kinematics Issues

� IK is challenging because while f() may be

relatively easy to evaluate, f-1() usually isn’t

� For one thing, there may be several possible

solutions for Φ, or there may be no solutionssolutions for Φ, or there may be no solutions

� Even if there is a solution, it may require

complex and expensive computations to find it

� As a result, there are many different approaches

to solving IK problems

Analytical vs. Numerical Solutions

� One major way to classify IK solutions is into
analytical and numerical methods

� Analytical methods attempt to mathematically
solve an exact solution by directly inverting the solve an exact solution by directly inverting the
forward kinematics equations. This is only
possible on relatively simple chains.

� Numerical methods use approximation and
iteration to converge on a solution. They tend to
be more expensive, but far more general
purpose.

� Today, we will examine a numerical IK
technique based on Jacobian matrices

Calculus Review

Derivative of a Scalar Function

� If we have a scalar function f of a single

variable x, we can write it as f(x)

� The derivative of the function with respect � The derivative of the function with respect

to x is df/dx

� The derivative is defined as:

() ()
x

xfxxf

x

f

dx

df

xx ∆
−∆+

=
∆
∆

=
→∆→∆ 00

limlim

Derivative of a Scalar Function

f-axis

f(x)
Slope=df/dx

x-axis x

Derivative of f(x)=x2

()

() ()xxxdf

xxf

lim

 :exampleFor

22

2

−∆+
=

=

() ()xfxxf −∆+
= lim() ()

() xxx

x

xxx

x

xxxxx

x

xxx

dx

df

x

x

x

x

22lim

2
lim

2
lim

lim

0

2

0

222

0

0

=∆+=
∆

∆+∆
=

∆
−∆+∆+

=

∆
−∆+

=

→∆

→∆

→∆

→∆

() ()
xx ∆

=
→∆ 0

lim

Exact vs. Approximate

� Many algorithms require the computation of derivatives

� Sometimes, we can compute analytical derivatives. For

example:

() x
df

xxf 2 2 ==

� Other times, we have a function that’s too complex, and

we can’t compute an exact derivative

� As long as we can evaluate the function, we can always

approximate a derivative

() x
dx

df
xxf 2 2 ==

() ()
x

x

xfxxf

dx

df
∆

∆
−∆+

≈ smallfor

Approximate Derivative

f-axis

f(x)
f(x+∆x)

Slope=∆f/∆x

x-axis ∆x

Nearby Function Values

� If we know the value of a function and its

derivative at some x, we can estimate what the

value of the function is at other points near x

() ()
dx

df
xxfxxf

dx

df
xf

dx

df

x

f

∆+≈∆+

∆≈∆

≈
∆
∆

Finding Solutions to f(x)=0

� There are many mathematical and
computational approaches to finding
values of x for which f(x)=0

One such way is the gradient descent� One such way is the gradient descent
method

� If we can evaluate f(x) and df/dx for any
value of x, we can always follow the
gradient (slope) in the direction towards 0

Gradient Descent

� We want to find the value of x that causes f(x) to
equal 0

� We will start at some value x0 and keep taking
small steps:small steps:

xi+1 = xi + ∆x

until we find a value xN that satisfies f(xN)=0

� For each step, we try to choose a value of ∆x
that will bring us closer to our goal

� We can use the derivative as an approximation
to the slope of the function and use this
information to move ‘downhill’ towards zero

Gradient Descent

f-axis

f(xi)

df/dx

x-axisxi

Minimization

� If f(xi) is not 0, the value of f(xi) can be thought of as an
error. The goal of gradient descent is to minimize this
error, and so we can refer to it as a minimization
algorithm

Each step ∆x we take results in the function changing its � Each step ∆x we take results in the function changing its
value. We will call this change ∆f.

� Ideally, we could have ∆f = -f(xi). In other words, we
want to take a step ∆x that causes ∆f to cancel out the
error

� More realistically, we will just hope that each step will
bring us closer, and we can eventually stop when we get
‘close enough’

� This iterative process involving approximations is
consistent with many numerical algorithms

Choosing ∆x Step

� If we have a function that varies heavily,

we will be safest taking small steps

� If we have a relatively smooth function, we � If we have a relatively smooth function, we

could try stepping directly to where the

linear approximation passes through 0

Choosing ∆x Step

� If we want to choose ∆x to bring us to the

value where the slope passes through 0, we can

use:

()
dx

df
xxf

dx

df
xf

dx

df

x

f

i ∆≈−

∆≈∆

≈
∆
∆

()
1−








−=∆
dx

df
xfx i

Gradient Descent

f-axis

f(xi)

df/dx

x-axisxi
xi+1

Solving f(x)=g

� If we don’t want to find where a function

equals some value ‘g’ other than zero, we

can simply think of it as minimizing f(x)-g can simply think of it as minimizing f(x)-g

and just step towards g:

()()
1−








−=∆
dx

df
xfgx i

Gradient Descent for f(x)=g

f-axis
xi

f(xi)

df/dx

g xi+1

x-axis

Taking Safer Steps

� Sometimes, we are dealing with non-smooth functions

with varying derivatives

� Therefore, our simple linear approximation is not very

reliable for large values of ∆xreliable for large values of ∆x

� There are many approaches to choosing a more

appropriate (smaller) step size

� One simple modification is to add a parameter β to scale

our step (0≤ β ≤1)

()()
1−








−=∆
dx

df
xfgx iβ

Inverse of the Derivative

� By the way, for scalar derivatives:

dxdf
==





−
1

1

df

dx

dx

dfdx

df
=









=







 1

Gradient Descent Algorithm

()
() { while

at evaluate //

 valuestarting initial

000

0

≠

=

=

n gf

xfxff

x

()

()

()
}

 newat evaluate //

 along step // take
1

slope compute/ /

111

1

+++

+

=

∆−+=

=

iii

i

iii

ii

xfxff

x
s

fgxx

x
dx

df
s

β

Stopping the Descent

� At some point, we need to stop iterating

� Ideally, we would stop when we get to our goal

� Realistically, we will stop when we get to within Realistically, we will stop when we get to within

some acceptable tolerance

� However, occasionally, we may get ‘stuck’ in a

situation where we can’t make any small step

that takes us closer to our goal

� We will discuss some more about this later

Derivative of a Vector Function

� If we have a vector function r which

represents a particle’s position as a

function of time t:function of time t:

[]









=

=

dt

dr

dt

dr

dt

dr

dt

d

rrr

zyx

zyx

r

r

Derivative of a Vector Function

� By definition, the derivative of position is

called velocity, and the derivative of

velocity is accelerationvelocity is acceleration

2

2

dt

d

dt

d

dt

d

rv
a

r
v

==

=

Derivative of a Vector Function

•

Vector Derivatives

� We’ve seen how to take a derivative of a

scalar vs. a scalar, and a vector vs. a

scalarscalar

� What about the derivative of a scalar vs. a

vector, or a vector vs. a vector?

Vector Derivatives

� Derivatives of scalars with respect to vectors

show up often in field equations, used in exciting

subjects like fluid dynamics, solid mechanics,

and other physically based animation and other physically based animation

techniques. If we are lucky, we’ll have time to

look at these later in the quarter

� Today, however, we will be looking at

derivatives of vector quantities with respect to

other vector quantities

Jacobians

� A Jacobian is a vector derivative with respect to
another vector

� If we have a vector valued function of a vector of
variables f(x), the Jacobian is a matrix of partial variables f(x), the Jacobian is a matrix of partial
derivatives- one partial derivative for each
combination of components of the vectors

� The Jacobian matrix contains all of the
information necessary to relate a change in any
component of x to a change in any component
of f

� The Jacobian is usually written as J(f,x), but you
can really just think of it as df/dx

Jacobians











∂∂
∂
∂

∂
∂

∂
∂

N

ff

x

f

x

f

x

f

d

... 1

2

1

1

1

f()















 ∂
∂

∂
∂

∂
∂

∂
∂

==

N

MM

x

f

x

f

x

f

x

f

d

d
J

......

............

......
,

1

2

2

1

2

x

f
xf

Partial Derivatives

� The use of the ∂ symbol instead of d for

partial derivatives really just implies that it

is a single component in a vector is a single component in a vector

derivative

� For many practical purposes, an individual

partial derivative behaves like the

derivative of a scalar with respect to

another scalar

Jacobian Inverse Kinematics

Jacobians

� Let’s say we have a simple 2D robot arm

with two 1-DOF rotational joints:

φ1

φ2

• e=[ex ey]

Jacobians

� The Jacobian matrix J(e,Φ) shows how

each component of e varies with respect

to each joint angleto each joint angle

()


















∂

∂

∂

∂
∂
∂

∂
∂

=

21

21,

φφ

φφ
yy

xx

ee

ee

J Φe

Jacobians

� Consider what would happen if we increased φ1

by a small amount. What would happen to e ?

 ∂∂∂ eee

φ1

•









∂

∂

∂
∂

=
∂
∂

111 φφφ
yx
eee

Jacobians

� What if we increased φ2 by a small amount?

 ∂∂∂ eee

φ2

•









∂

∂

∂
∂

=
∂
∂

222 φφφ
yx
eee

Jacobian for a 2D Robot Arm

() 







∂∂
∂
∂

∂
∂

= 21,
φφ
xx ee

J Φe

φ2

•

φ1

()








 ∂

∂

∂

∂=

21

21,

φφ
yy ee

J Φe

Jacobian Matrices

� Just as a scalar derivative df/dx of a

function f(x) can vary over the domain of

possible values for x, the Jacobian matrix possible values for x, the Jacobian matrix

J(e,Φ) varies over the domain of all

possible poses for Φ

� For any given joint pose vector Φ, we can

explicitly compute the individual

components of the Jacobian matrix

Jacobian as a Vector Derivative

()
Φ

e
Φe

d

d
J =,

� Once again, sometimes it helps to think of:

()
Φ

Φe
d

J =,

because J(e,Φ) contains all the
information we need to know about how to
relate changes in any component of Φ to
changes in any component of e

Incremental Change in Pose

� Lets say we have a vector ∆Φ that

represents a small change in joint DOF

valuesvalues

� We can approximate what the resulting

change in e would be:

() ΦJΦΦeΦ
Φ

e
e ∆⋅=∆⋅=∆⋅≈∆ ,J
d

d

Incremental Change in Effector

� What if we wanted to move the end

effector by a small amount ∆e. What small

change ∆Φ will achieve this?change ∆Φ will achieve this?

eJΦ

ΦJe

∆⋅≈∆

∆⋅≈∆

−1

: so

Incremental Change in e

∆e

� Given some desired incremental change in end effector

configuration ∆e, we can compute an appropriate

incremental change in joint DOFs ∆Φ

φ2

•

φ1

eJΦ ∆⋅≈∆ −1

∆e

Incremental Changes

� Remember that forward kinematics is a
nonlinear function (as it involves sin’s and cos’s
of the input variables)

� This implies that we can only use the Jacobian � This implies that we can only use the Jacobian
as an approximation that is valid near the
current configuration

� Therefore, we must repeat the process of
computing a Jacobian and then taking a small
step towards the goal until we get to where we
want to be

End Effector Goals

� If Φ represents the current set of joint DOFs and

e represents the current end effector DOFs, we

will use g to represent the goal DOFs that we

want the end effector to reachwant the end effector to reach

Choosing ∆e

� We want to choose a value for ∆e that will move e closer
to g. A reasonable place to start is with

∆e = g - e

� We would hope then, that the corresponding value of ∆Φ
would bring the end effector exactly to the goal

� Unfortunately, the nonlinearity prevents this from
happening, but it should get us closer

� Also, for safety, we will take smaller steps:

∆e = β(g - e)

where 0≤ β ≤1

Basic Jacobian IK Technique

while (e is too far from g) {

Compute J(e,Φ) for the current pose Φ

Compute J-1 // invert the Jacobian matrix

∆e = β(g - e) // pick approximate step to take∆e = β(g - e) // pick approximate step to take

∆Φ = J-1 · ∆e // compute change in joint DOFs

Φ = Φ + ∆Φ // apply change to DOFs

Compute new e vector // apply forward

// kinematics to see

// where we ended up

}

A Few Questions

� How do we compute J ?

� How do we invert J to compute J-1 ?

� How do we choose β (step size)� How do we choose β (step size)

� How do we determine when to stop the

iteration?

Computing the Jacobian

Computing the Jacobian Matrix

� We can take a geometric approach to computing
the Jacobian matrix

� Rather than look at it in 2D, let’s just go straight
to 3Dto 3D

� Let’s say we are just concerned with the end
effector position for now. Therefore, e is just a
3D vector representing the end effector position
in world space. This also implies that the
Jacobian will be an 3xN matrix where N is the
number of DOFs

� For each joint DOF, we analyze how e would
change if the DOF changed

1-DOF Rotational Joints

� We will first consider DOFs that represents a rotation
around a single axis (1-DOF hinge joint)

� We want to know how the world space position e will
change if we rotate around the axis. Therefore, we will
need to find the axis and the pivot point in world spaceneed to find the axis and the pivot point in world space

� Let’s say φi represents a rotational DOF of a joint. We
also have the offset ri of that joint relative to it’s parent
and we have the rotation axis ai relative to the parent as
well

� We can find the world space offset and axis by
transforming them by their parent joint’s world matrix

1-DOF Rotational Joints

� To find the pivot point and axis in world space:

parentiii −⋅=′ Waa

� Remember these transform as homogeneous

vectors. r transforms as a position [rx ry rz 1] and

a transforms as a direction [ax ay az 0]

parentiii −⋅=′ Wrr

Rotational DOFs

� Now that we have the axis and pivot point of the

joint in world space, we can use them to find

how e would change if we rotated around that

axisaxis

� This gives us a column in the Jacobian matrix

()ii

i

rea
e

′−×′=
∂
∂
φ

Rotational DOFs

()ii rea
e

′−×′=
∂
∂
φ

•
iφ∂

∂e e

re ′−

a’i: unit length rotation axis in world space

r’i: position of joint pivot in world space

e: end effector position in world space

()ii

i

rea ′−×′=
∂φ

•

ia′

ire ′−

ir′

3-DOF Rotational Joints

� For a 2-DOF or 3-DOF joint, it is actually a little trickier to

get the world space axis

� Consider how we would find the world space x-axis of a

3-DOF ball joint3-DOF ball joint

� Not only do we need to consider the parent’s world

matrix, but we need to include the rotation around the

next two axes (y and z-axis) as well

� This is because those following rotations will rotate the

first axis itself

3-DOF Rotational Joints

� For example, assuming we have a 3-DOF ball joint that
rotates in XYZ order:

[] () () parentzzyyi WRRa ⋅⋅⋅=′ 0001 θθ:dofx −

� Where Ry(θy) and Rz(θz) are y and z rotation matrices

[] () ()
[] ()
[] parenti

parentzzi

parentzzyyi

Wa

WRa

WRRa

⋅=′

⋅⋅=′

⋅⋅⋅=′

0100

0010

0001

θ

θθ

:

:

:

dofz

dofy

dofx

−

−

−

3-DOF Rotational Joints

� Remember that a 3-DOF XYZ ball joint’s local matrix will

look something like this:

() () () () ()rTRRRL ⋅⋅⋅= zzyyxxzyx θθθθθθ ,,

� Where Rx(θx), Ry(θy), and Rz(θz) are x, y, and z rotation

matrices, and T(r) is a translation by the (constant) joint

offset

� So it’s world matrix looks like this:

() () () () ()rTRRRL ⋅⋅⋅= zzyyxxzyx θθθθθθ ,,

() () () () parentzzyyxx WrTRRRW ⋅⋅⋅⋅= θθθ

3-DOF Rotational Joints

� Once we have each axis in world space, each
one will get a column in the Jacobian matrix

� At this point, it is essentially handled as three
1-DOF joints, so we can use the same formula 1-DOF joints, so we can use the same formula
for computing the derivative as we did earlier:

� We repeat this for each of the three axes

()ii

i

rea
e

′−×′=
∂
∂
φ

Quaternion Joints

� What about a quaternion joint? How do we

incorporate them into our IK formulation?

� We will assume that a quaternion joint is

capable of rotating around any axiscapable of rotating around any axis

� However, since we are trying to find a way to

move e towards g, we should pick the best

possible axis for achieving this

() ()
() ()ii

ii
i

rgre

rgre
a

′−×′−

′−×′−
=′

Quaternion Joints

() ()
() ()ii

ii
i

rgre

rgre
a

′−×′−

′−×′−
=′

•
egii

•

• •
e

irg ′−
ire ′−

ir′
ia′

g

Quaternion Joints

� We compute ai’ directly in world space, so we don’t need

to transform it

� Now that we have ai’, we can just compute the derivative

the same way we would do with any other rotational axisthe same way we would do with any other rotational axis

� We must remember what axis we use, so that later,

when we’ve computed ∆φi, we know how to update the

quaternion

()ii

i

rea
e

′−×′=
∂
∂
φ

Translational DOFs

� For translational DOFs, we start in the

same way, namely by finding the

translation axis in world spacetranslation axis in world space

� If we had a prismatic joint (1-DOF

translation) that could translate along an

arbitrary axis ai defined in the parent’s

space, we can use:

parentiii −⋅=′ Waa

Translational DOFs

� For a more general 3-DOF translational joint that
just translates along the local x, y, and z-axes,
we don’t need to do the same thing that we did
for rotationfor rotation

� The reason is that for translations, a change in
one axis doesn’t affect the other axes at all, so
we can just use the same formula and plug in
the x, y, and z axes [1 0 0 0], [0 1 0 0], [0 0 1 0]
to get the 3 world space axes

� Note: this will just return the a, b, and c axes of
the parent’s world space matrix, and so we don’t
actually have to compute them!

Translational DOFs

� As with rotation, each translational DOF is

still treated separately and gets its own

column in the Jacobian matrixcolumn in the Jacobian matrix

� A change in the DOF value results in a

simple translation along the world space

axis, making the computation trivial:

i

i

a
e

′=
∂
∂
φ

Translational DOFs

iφ∂
∂e•

ia′

iφ∂

•

Building the Jacobian

� To build the entire Jacobian matrix, we just loop
through each DOF and compute a
corresponding column in the matrix

� If we wanted, we could use more elaborate joint � If we wanted, we could use more elaborate joint
types (scaling, translation along a path,
shearing…) and still compute an appropriate
derivative

� If absolutely necessary, we could always resort
to computing a numerical approximation to the
derivative

Units & Scaling

� What about units?

� Rotational DOFs use radians and translational
DOFs use meters (or some other measure of
distance)distance)

� How can we combine their derivatives into the
same matrix?

� Well, it’s really a bit of a hack, but we just
combine them anyway

� If desired, we can scale any column to adjust
how much the IK will favor using that DOF

Units & Scaling

� For example, we could scale all rotations by some
constant that causes the IK to behave how we would like

� Also, we could use this as an additional way to get
control over the behavior of the IK

� We can store an additional parameter for each DOF that
defines how ‘stiff’ it should behave

� If we scale the derivative larger (but preserve direction),
the solution will compensate with a smaller value for ∆φi,
therefore making it act stiff

� There are several proposed methods for automatically
setting the stiffness to a reasonable default value. They
generally work based on some function of the length of
the actual bone. The Welman paper talks about this.

End Effector Orientation

End Effector Orientation

� We’ve examined how to form the columns of a
Jacobian matrix for a position end effector with 3
DOFs

� How do we incorporate orientation of the end � How do we incorporate orientation of the end
effector?

� We will add more DOFs to the end effector
vector e

� Which method should we use to represent the
orientation? (Euler angles? Quaternions?…)

� Actually, a popular method is to use the 3 DOF
scaled axis representation!

Scaled Rotation Axis

� We learned that any orientation can be represented as a
single rotation around some axis

� Therefore, we can store an orientation as an 3D vector

� The direction of the vector is the rotation axisThe direction of the vector is the rotation axis

� The length of the vector is the angle to rotate in
radians

� This method has some properties that work well with the
Jacobian approach

� Continuous and consistent

� No redundancy or extra constraints

� It’s also a nice method to store incremental changes
in rotation

6-DOF End Effector

� If we are concerned about both the position and
orientation of the end effector, then our e vector should
contain 6 numbers

� But remember, we don’t actually need the e vector, we
really just need the ∆e vectorreally just need the ∆e vector

� To generate ∆e, we compare the current end effector
position/orientation (matrix E) to the goal
position/orientation (matrix G)

� The first 3 components of ∆e represent the desired
change in position: β(G.d - E.d)

� The next 3 represent a desired change in orientation,
which we will express as a scaled axis vector

Desired Change in Orientation

� We want to choose a rotation axis that rotates E in to G

� We can compute this using some quaternions:

M=E-1·G

q.FromMatrix(M);q.FromMatrix(M);

� This gives us a quaternion that represents a rotation
from E to G

� To extract out the rotation axis and angle, we just
remember that:

� We can then scale the final axis by β






=
2

sin
2

sin
2

sin
2

cos
θθθθ

zyx aaaq

End Effector

� So we now can define our goal with a matrix and
come up with some desired change in end
effector values that will bring us closer to that
goal:goal:

� We must now compute a Nx6 Jacobian matrix,
where each column represents how a particular
DOF will affect both the position and orientation
of the end effector

[]Tzyxzyx ttt θθθ ∆∆∆∆∆∆=∆e

Rotational DOFs

� We need to compute additional derivatives that show
how the end effector orientation changes with respect to
an incremental change in each DOF

� We will use the scaled axis to represent the incremental
changechange

� For a rotational DOF, we first find the rotation axis in
world space (as we did earlier)

� Then- we’re done! That axis already represents the
incremental rotation caused by that DOF

� By default, the length of the axis should be 1, indicating
that a change of 1 in the DOF value results in a rotation
of 1 radian around the axis. We can scale this by a
stiffness value if desired

Rotational DOFs

� The column in the Nx6 Jacobian matrix
corresponding to a rotational DOF is:

()[]  ′−×′
=

∂
=

T
reae

� a’ is the rotation axis in world space

� r’ is the pivot point in world space

� epos is the position of the end effector in world
space

()[]
[] 









′

′−×′
=

∂
∂

=
T

i

iposi

i

i
a

reae
J

φ

Translational DOFs

� Translational DOFs don’t affect the end

effector orientation, so their contribution to

the derivative of orientation will be [0 0 0]the derivative of orientation will be [0 0 0]

[]



















 ′

=
∂
∂

=

0

0

0

T

i

i

i

a

e
J

φ

Inverse Kinematics (part 2)

CSE169: Computer Animation

Instructor: Steve Rotenberg

UCSD, Winter 2005

Inverting the Jacobian Matrix

Inverting the Jacobian

� If the Jacobian is square (number of joint DOFs
equals the number of DOFs in the end effector),
then we might be able to invert the matrix

� Most likely, it won’t be square, and even if it is, � Most likely, it won’t be square, and even if it is,
it’s definitely possible that it will be singular and
non-invertable

� Even if it is invertable, as the pose vector
changes, the properties of the matrix will change
and may become singular or near-singular in
certain configurations

� The bottom line is that just relying on inverting
the matrix is not going to work

Underconstrained Systems

� If the system has more degrees of freedom in

the joints than in the end effector, then it is likely

that there will be a continuum of redundant

solutions (i.e., an infinite number of solutions)solutions (i.e., an infinite number of solutions)

� In this situation, it is said to be underconstrained

or redundant

� These should still be solvable, and might not

even be too hard to find a solution, but it may be

tricky to find a ‘best’ solution

Overconstrained Systems

� If there are more degrees of freedom in the end
effector than in the joints, then the system is
said to be overconstrained, and it is likely that
there will not be any possible solutionthere will not be any possible solution

� In these situations, we might still want to get as
close as possible

� However, in practice, overconstrained systems
are not as common, as they are not a very
useful way to build an animal or robot (they
might still show up in some special cases
though)

Well-Constrained Systems

� If the number of DOFs in the end effector equals

the number of DOFs in the joints, the system

could be well constrained and invertable

In practice, this will require the joints to be � In practice, this will require the joints to be

arranged in a way so their axes are not

redundant

� This property may vary as the pose changes,

and even well-constrained systems may have

trouble

Pseudo-Inverse

� If we have a non-square matrix arising
from an overconstrained or
underconstrained system, we can try
using the pseudoinverse:using the pseudoinverse:

J*=(JTJ)-1JT

� This is a method for finding a matrix that
effectively inverts a non-square matrix

Degenerate Cases

� Occasionally, we will get into a configuration that

suffers from degeneracy

� If the derivative vectors line up, they lose their

linear independence

•

linear independence

Single Value Decomposition

� The SVD is an algorithm that decomposes a
matrix into a form whose properties can be
analyzed easily

� It allows us to identify when the matrix is � It allows us to identify when the matrix is
singular, near singular, or well formed

� It also tells us about what regions of the
multidimensional space are not adequately
covered in the singular or near singular
configurations

� The bottom line is that it is a more sophisticated,
but expensive technique that can be useful both
for analyzing the matrix and inverting it

Jacobian Transpose

� Another technique is to simply take the
transpose of the Jacobian matrix!

� Surprisingly, this technique actually works pretty
wellwell

� It is much faster than computing the inverse or
pseudo-inverse

� Also, it has the effect of localizing the
computations. To compute ∆φi for joint i, we
compute the column in the Jacobian matrix Ji as
before, and then just use:

∆φi = Ji
T · ∆e

Jacobian Transpose

� With the Jacobian transpose (JT) method, we can just
loop through each DOF and compute the change to that
DOF directly

� With the inverse (JI) or pseudo-inverse (JP) methods,
we must first loop through the DOFs, compute and store we must first loop through the DOFs, compute and store
the Jacobian, invert (or pseudo-invert) it, then compute
the change in DOFs, and then apply the change

� The JT method is far friendlier on memory access &
caching, as well as computations

� However, if one prefers quality over performance, the JP
method might be better…

Iterating to the Solution

Iteration

� Whether we use the JI, JP, or JT method,

we must address the issue of iteration

towards the solutiontowards the solution

� We should consider how to choose an

appropriate step size β and how to decide

when the iteration should stop

When to Stop

� There are three main stopping conditions we
should account for
� Finding a successful solution (or close enough)

� Getting stuck in a condition where we can’t improve � Getting stuck in a condition where we can’t improve
(local minimum)

� Taking too long (for interactive systems)

� All three of these are fairly easy to identify by
monitoring the progress of Φ

� These rules are just coded into the while()
statement for the controlling loop

Finding a Successful Solution

� We really just want to get close enough within some
tolerance

� If we’re not in a big hurry, we can just iterate until we get
within some floating point error range

� Alternately, we could choose to stop when we get within
some tolerance measurable in pixels

� For example, we could position an end effector to 0.1
pixel accuracy

� This gives us a scheme that should look good and
automatically adapt to spend more time when we are
looking at the end effector up close (level-of-detail)

Local Minima

� If we get stuck in a local minimum, we have several
options

� Don’t worry about it and just accept it as the best we
can do

� Switch to a different algorithm (CCD…)

� Randomize the pose vector slightly (or a lot) and try
again

� Send an error to whatever is controlling the end
effector and tell it to try something else

� Basically, there are few options that are truly appealing,
as they are likely to cause either an error in the solution
or a possible discontinuity in the motion

Taking Too Long

� In a time critical situation, we might just

limit the iteration to a maximum number of

stepssteps

� Alternately, we could use internal timers to

limit it to an actual time in seconds

Iteration Stepping

� Step size

� Stability

� Performance� Performance

Other IK Issues

Joint Limits

� A simple and reasonably effective way to handle joint
limits is to simply clamp the pose vector as a final step in
each iteration

� One can’t compute a proper derivative at the limits, as
the function is effectively discontinuous at the boundarythe function is effectively discontinuous at the boundary

� The derivative going towards the limit will be 0, but
coming away from the limit will be non-zero. This leads
to an inequality condition, which can’t be handled in a
continuous manner

� We could just choose whether to set the derivative to 0
or non-zero based on a reasonable guess as to which
way the joint would go. This is easy in the JT method,
but can potentially cause trouble in JI or JP

Higher Order Approximation

� The first derivative gives us a linear

approximation to the function

� We can also take higher order derivatives � We can also take higher order derivatives

and construct higher order approximations

to the function

� This is analogous to approximating a

function with a Taylor series

Repeatability

� If a given goal vector g always generates the same pose

vector Φ, then the system is said to be repeatable

� This is not likely to be the case for redundant systems

unless we specifically try to enforce itunless we specifically try to enforce it

� If we always compute the new pose by starting from the

last pose, the system will probably not be repeatable

� If, however, we always reset it to a ‘comfortable’ default

pose, then the solution should be repeatable

� One potential problem with this approach however is that

it may introduce sharp discontinuities in the solution

Multiple End Effectors

� Remember, that the Jacobian matrix relates each DOF
in the skeleton to each scalar value in the e vector

� The components of the matrix are based on quantities
that are all expressed in world space, and the matrix
itself does not contain any actual information about the itself does not contain any actual information about the
connectivity of the skeleton

� Therefore, we extend the IK approach to handle tree
structures and multiple end effectors without much
difficulty

� We simply add more DOFs to the end effector vector to
represent the other quantities that we want to constrain

� However, the issue of scaling the derivatives becomes
more important as more joints are considered

Multiple Chains

� Another approach to handling tree structures
and multiple end effectors is to simply treat it as
several individual chains

� This works for characters often, as we can � This works for characters often, as we can
animate the body with a forward kinematic
approach, and then animate each limb with IK
by positioning the hand/foot as the end effector
goal

� This can be faster and simpler, and actually offer
a nicer way to control the character

Geometric Constraints

� One can also add more abstract geometric
constraints to the system
� Constrain distances, angles within the skeleton

� Prevent bones from intersecting each other or the � Prevent bones from intersecting each other or the
environment

� Apply different weights to the constraints to signify
their importance

� Have additional controls that try to maximize the
‘comfort’ of a solution

� Etc.

� Welman talks about this in section 5

Other IK Techniques

� Cyclic Coordinate Descent
� This technique is more of a trigonometric approach and is more

heuristic. It does, however, tend to converge in fewer iterations
than the Jacobian methods, even though each iteration is a bit
more expensive. Welman talks about this method in section 4.2more expensive. Welman talks about this method in section 4.2

� Analytical Methods
� For simple chains, one can directly invert the forward kinematic

equations to obtain an exact solution. This method can be very
fast, very predictable, and precisely controllable. With some
finesse, one can even formulate good analytical solvers for more
complex chains with multiple DOFs and redundancy

� Other Numerical Methods
� There are lots of other general purpose numerical methods for

solving problems that can be cast into f(x)=g format

Jacobian Method as a Black Box

� The Jacobian methods were not invented for
solving IK. They are a far more general purpose
technique for solving systems of non-linear
equationsequations

� The Jacobian solver itself is a black box that is
designed to solve systems that can be
expressed as f(x)=g (e(Φ)=g)

� All we need is a method of evaluating f and J for
a given value of x to plug it into the solver

� If we design it this way, we could conceivably
swap in different numerical solvers (JI, JP, JT,
damped least-squares, conjugate gradient…)

