
Introduction to Shader Programming

Game Design Experience
Professor Jim Whitehead

March 9, 2009

Creative Commons Attribution 3.0

(Except copyrighted images and example Shader)

creativecommons.org/licenses/by/3.0

Announcements

•

Days until Final Project Due: 7
►

Due Monday, March 16
►

Few students have been attending help sessions
►

We will not be able to help you as well at the last minute
•

3D modeling homework
►

Due Today, by 5PM
►

Submit code via Homework submission website

What is a Shader?

•

Recall that all 3D drawing in XNA uses a Shader
►

Have been using BasicEffect

shader

so far
•

But, more generally, what is a shader?
►

Today, gaming computers have both a CPU, and a
GPU

•

CPU is on motherboard, GPU is on graphics card
–

CPU is an unspecialized computer
•

GPU is a computer specialized for 3D graphics
–

Advantage: faster 3D graphics, more effects, larger scenes

►

A Shader

is a small program that runs on the GPU
•

Written in a Shader

language (HLSL, Cg, GLSL)
•

XNA supports only the HLSL shader

language

Shader Languages

•

Currently 3 major
shader

languages
►

Cg (Nvidia)
►

HLSL (Microsoft)
•

Derived from Cg
►

GLSL (OpenGL)
•

Main influences are
►

C language
►

pre-existing
Shader

languages
developed in
university and
industry

HLSL
(Microsoft, 2002?)

GLSL
(OpenGL ARB, 2003)

ARB Vertex/Fragment
(OpenGL ARB, 2002)

Source: http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

(Modified with information on HLSL and GLSL)

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

Brief history

•

Initially, computers did not have specialized graphics
hardware
►

In mid-90’s 3D acceleration hardware appeared
•

OpenGL typically provided better support
►

DirectX 7 (1999) introduced support for hardware T&L
•

Transform and lighting
•

Moved vertex transformations and lighting computations from CPU to
GPU

•

Improved game graphics, but at a cost: lighting and display
calculations hard-wired into cards

•

Led to games having similar look
►

In 2002, first consumer-level programmable GPUs

became
available

•

Led to development of Cg, HLSL, and GLSL shader

languages
•

Benefit: can have game-specific custom graphics programs running on
GPU

•

Games can have very distinctive visuals

Types of Shaders

•

Shaders

(GPU programs) are specialized into 3
different types:
►

Vertex shaders
•

Executed once per vertex in a scene.
•

Transforms 3D position in space to 2D coordinate on screen
•

Can manipulate position, color, texture coordinates
•

Cannot add new vertices
►

Geometry shaders
•

Can add/remove vertices from a mesh
•

Can procedurally generate geometry, or add detail to shapes
►

Pixel shaders

(fragment shaders)
•

Calculates the color of individual pixels
•

Used for lighting, texturing, bump mapping, etc.
•

Executed once per pixel per geometric primitive

Shader control flow

•

C#/XNA program
sends vertices and
textures to the GPU
►

These are the input
for the vertex and
pixel shader

•

Shader

executes
vertex shader
►

Once per vertex
•

Shader

executes

pixel shader
►

Once per pixel in
each primitive object

Vertex

Shader

Pixel

Shader

GPUCPU

C#/XNA
program

vertices, textures

display

Anatomy of a Shader in HLSL

•

Shader

is a program written
in textual form in HLSL

•

Programs tend to have
these parts
►

Global variables
•

Variables used by multiple
functions

•

Way to pass arbitrary data
from C#/XNA to Shader

►

Data structure definitions
•

Data structures used within
the shader

functions
►

Vertex and Pixel shaders
•

Functions written in HLSL
►

Techniques
•

Describe grouping of vertex
and pixel shaders

•

Describe ordering of same

Global variables

Data structure definitions

Vertex shading functions

Pixel shading functions

Techniques

(calls to vertex and pixel
shading functions)

Common data types in HLSL

•

HLSL has well known data types
►

int, float, bool, string, void
•

Vectors
►

float3, float4 –

3/4 item floating point vector
•

float4 color = float4(1, 0, 0, 1);
•

Red, in RGBA (red, green, blue, alpha) color space
•

Used to represent vertices, colors
•

Matrices
►

floatRxC

–

creates matrix with R rows, C cols
•

Float4x4 –

a 4x4 matrix
•

Used to represent transformation matrices
•

Structures
struct

structname {
variable declarations of members

}
Example:
struct

myStruct

{
float4 position;

}

Passing Information to/from a Shader

•

There are two ways information is passed into a Shader
►

Directly set global variables
•

In C#/XNA:
•

effect.Parameters[“global variable name”].SetValue(value)
•

Example:
•

HLSL: float4x4 World; The global variable
•

C#/XNA: effect.Parameters[“World”].SetValue(Matrix.Identity);
►

Semantics
•

“Magic”

variables
•

Names and meaning are hard-wired by HLSL language specification
•

Examples:
–

POSITION0: a float4 representing the current vertex
»

When the HLSL program is executing, before each Vertex
shader

is called, POSITION0 is updated with the next vertex
–

COLOR0: a float4 representing the current pixel color

Example Shader

•

Example is Shader

from
Chapter 13 of Learning XNA
3.0, Aaron Reed, O’Reilly,
2009.

float4x4 World;

float4x4 View;

float4x4 Projection;

struct

VertexShaderInput

{

float4 Position : POSITION0;

};

struct

VertexShaderOutput

{

float4 Position : POSITION0;

};

VertexShaderOutput

VertexShaderFunction(VertexShaderInput

input) {

VertexShaderOutput

output;

 float4 worldPosition

= mul(input.Position, World);

float4 viewPosition

= mul(worldPosition, View);

output.Position

= mul(viewPosition, Projection);

return output;

}

Global variables

Data structures

Vertex Shader

Computes final output position
(x,y,z,w) from input position

semantic

Example Shader (cont’d)

float4 PixelShaderFunction() : COLOR0

{

return float4(1, 0, 0, 1);

}

Technique Technique1

{

pass Pass1

{

VertexShader

= compile vs_1_1 VertexShaderFunction();

PixelShader

= compile ps_1_1 PixelShaderFunction();

}

}

Pixel Shader

function

Makes every pixel red.

Compile Vertex and Pixel shaders

using
Shader

version 1.1

Define a technique combining the
vertex and pixel shaders
Contains a single pass

An output semantic

Connecting Shader to C#/XNA

Four main steps in using a Shader

from XNA
1.

Load the Shader

via the Content manager

►

Creates Effect variable using the loaded shader
►

Add shader

under Content directory
•

Move .fx

file in file system to Content directory
•

On Content, right-click, then Add …

Existing Item to add to project
►

Content.Load<Effect>(@”name of effect”)

2.

Identify current technique to use
•

effect.CurrentTechnique

= effect.Techniques[“technique name from HLSL
source code”]

3.

Set global variables
►

effect.Parameters[“global variable name”].SetValue(value)

4.

Iterate through passes (techniques) in the shader

Connecting sample shader to C#/XNA

Effect effect;

effect = Content.Load<Effect>(@”red”);

effect.CurrentTechnique

= effect.Techniques[“Technique1”];

effect.Parameters[“World”].SetValue(Matrix.Identity);

effect.Parameters[“View”].SetValue(camera.view);

effect.Parameters[“Projection”].SetValue(camera.projection);

effect.Begin();

foreach

(EffectPass

pass in effect.CurrentTechnique.Passes)

{

pass.Begin();

GraphicsDevice.DrawUserPrimitives<VertexPositionTexture>

(PrimitiveType.TriangleStrip, verts, 0, 2);

pass.End();

}

effect.End();

Create effect, load it via Content
manager

Set current technique

Set global variables in HLSL code

Iterate through passes inside
current technique

	Introduction to Shader Programming
	Announcements
	What is a Shader?
	Shader Languages
	Brief history
	Types of Shaders
	Shader control flow
	Anatomy of a Shader in HLSL
	Common data types in HLSL
	Passing Information to/from a Shader
	Example Shader
	Example Shader (cont’d)
	Connecting Shader to C#/XNA
	Connecting sample shader to C#/XNA
	Slide Number 15

