
6.042/18.062J Mathematics for Computer Science February 1, 2005

Srini Devadas and Eric Lehman Lecture Notes

Logic

It’s really sort of amazing that people manage to communicate in the English language.
Here are some typical sentences:

1. “You may have cake or you may have ice cream.”

2. “If pigs can fly, then you can understand the Chernoff bound.”

3. “If you can solve any problem we come up with, then you get an A for the course.”

4. “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream or must
you choose just one desert? If the second sentence is true, then is the Chernoff bound
incomprehensible? If you can solve some problems we come up with but not all, then do
you get an A for the course? And can you still get an A even if you can’t solve any of the
problems? Does the last sentence imply that all Americans have the same dream or might
they each have a different dream?

Some uncertainty is tolerable in normal conversation. But when we need to formu
late ideas precisely— as in mathematics— the ambiguities inherent in everyday language
become a real problem. We can’t hope to make an exact argument if we’re not sure ex
actly what the individual words mean. (And, not to alarm you, but it is possible that we’ll
be making an awful lot of exacting mathematical arguments in the weeks ahead.) So be
fore we start into mathematics, we need to investigate the problem of how to talk about
mathematics.

To get around the ambiguity of English, mathematicians have devised a special mini
language for talking about logical relationships. This language mostly uses ordinary
English words and phrases such as “or”, “implies”, and “for all”. But mathematicians
endow these words with definitions more precise than those found in an ordinary dictio
nary. Without knowing these definitions, you could sort of read this language, but you
would miss all the subtleties and sometimes have trouble following along.

Surprisingly, in the midst of learning the language of logic, we’ll come across the most
important open problem in computer science— a problem whose solution could change
the world.

2 Logic

1 Propositions

A proposition is a statement that is either true or false. This definition is a little vague, but
it does exclude sentences such as, “What’s a surjection, again?” and “Learn logarithms!”
Here are some examples of propositions.

“All Greeks are human.”
“All humans are mortal.”
“All Greeks are mortal.”

Archimedes spent a lot of time fussing with such propositions in the 4th century BC while
developing an early form of logic. These are perfectly good examples, but we’ll be more
concerned with propositions of a more mathematical flavor:

“2 + 3 = 5”

This proposition happens to be true. Sometimes the truth of a proposition is more difficult
to determine:

4“a + b4 + c4 = d4 has no solution where a, b, c are positive integers.”

Euler made this conjecture in 1769. For 218 years no one knew whether this proposition
was true or false. Finally, Noam Elkies who works at the liberal arts school up Mass Ave.
found a solution to the equation: a = 2682440, b = 15365639, c = 18796760, d = 20615673.
So the proposition is false!

There are many famous propositions about primes. Recall that a prime is an integer
greater than 1 not divisible by any positive integer other than 1 and itself. The first few
primes are 2, 3, 5, 7, 11, and 13. On the other hand, 9 and 77 are not primes, because 9
is divisible by 3 and 77 is divisible by 7. The following proposition is called Goldbach’s
Conjecture, after Christian Goldbach who first stated it in 1742.

“Every even integer greater than 2 is the sum of two primes.”

Even today, no one knows whether Goldbach’s Conjecture is true or false. Every even
integer ever checked is a sum of two primes, but just one exception would disprove the
claim.

For the next while, we won’t be much concerned with the internals of propositions—
whether they involve mathematics or Greek mortality— but rather with how propositions
are combined and related. So we’ll frequently use variables such as P and Q in place of
specific propositions such as “All humans are mortal” and “2+3 = 5”. The understanding
is that these variables, like propositions, can take on only the values “true” and “false”.
Such true/false variables are sometimes called Boolean variables after their inventor,
George somethingorother.

Logic 3

1.1 Combining Propositions

In English, we can modify, combine, and relate propositions with words such as “not”,
“and”, “or”, “implies”, and “ifthen”. For example, we can combine three propositions
into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

1.1.1 “Not”, “And” and “Or”

We can precisely define these special words using truth tables. For example, if P denotes
an arbitrary proposition, then the validity of the proposition “not P” is defined by the
following truth table:

P not P
T F
F T

The first row of the table indicates that when proposition P is true (T), the proposition
“not P” is false (F). The second line indicates that when P is false, “not P” is true. This is
probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each possible
setting of the variables. For example, the truth table for the proposition “P and Q” has
four lines, since the two variables can be set in four different ways:

P Q

T T T
T F F
F T F
F F F

P and Q

According to this table, the proposition “P and Q” is true only when P and Q are both
true. This is probably reflects the way you think about the word “and”.

There is a subtlety in the truth table for “P or Q”:

P Q
T T T
T F T
F T T
F F F

P or Q

This says that “P or Q” is true when P is true, Q is true, or both are true. This isn’t always
the intended meaning of “or” in everyday speech, but this is the standard definition in
mathematical writing. So if a mathematician says, “You may have cake or your may have
ice cream”, then you can have both.

4 Logic

1.1.2 “Implies”

The least intuitive connecting word is “implies”. Mathematicians regard the propositions
“P implies Q” and “if P then Q” as synonymous, so both have the same truth table. (The
lines are numbered so we can refer to the them later.)

P Q

1. T T T
2. T F F
3. F T T
4. F F T

P implies Q,

if P then Q

Let’s experiment with this definition. For example, is the following proposition true
or false?

2“If Goldbach’s Conjecture is true, then x ≥ 0 for every real number x.”

Now, we told you before that no one knows whether Goldbach’s Conjecture is true or
false. But that doesn’t prevent you from answering the question! This proposition has the

2form P ⇒ Q where P is “Goldbach’s Conjecture is true” and Q is “x ≥ 0 for every real
number x”. Since Q is definitely true, we’re on either line 1 or line 3 of the truth table.
Either way, the proposition as a whole is true!

One of our original examples demonstrates an even stranger side of implications.

“If pigs fly, then you can understand the Chernoff bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is true or
false. Curiously, the answer has nothing to do with whether or not you can understand
the Chernoff bound. Pigs do not fly, so we’re on either line 3 or line 4 of the truth table.
In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon is white, then the moon is made of white cheddar.”

Yes, the moon is white. But, no, the moon is not made of white cheddar cheese. So we’re
on line 2 of the truth table, and the proposition is false.

The truth table for implications can be summarized in words as follows:

An implication is true when the ifpart is false or the thenpart is true.

This sentence is worth remembering; a large fraction of all mathematical statements are
of the ifthen form!

Logic 5

1.1.3 “If and Only If”

Mathematicians commonly join propositions in one additional way that doesn’t arise in
ordinary speech. The proposition “P if and only if Q” asserts that P and Q are logically
equivalent; that is, either both are true or both are false.

P Q

T T T
T F F
F T F
F F T

P if and only if Q

The following ifandonlyif statement is true for every real number x:

2“x − 4 ≥ 0 if and only if x ≥ 2” | |

For some values of x, both inequalities are true. For other values of x, neither inequality is
true . In every case, however, the proposition as a whole is true.

The phrase “if and only if” comes up so often that it is often abbreviated “iff”.

1.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For exam
ple, consider the following snippet, which could be either C, C++, or Java:

if (x > 0 || (x <= 0 && y > 100))

(further instructions)

The symbol || denotes “or”, and the symbol && denotes “and”. The further instructions
are carried out only if the proposition following the word if is true. On closer inspection,
this big expression is built from two simpler propositions. Let A be the proposition that x
> 0, and let B be the proposition that y > 100. Then we can rewrite the condition this
way:

A or ((not A) and B)

A truth table reveals that this complicated expression is logically equivalent to “A or B”.

A B
T T T T
T F T T
F T T T
F F F F

A or ((not A) and B)
 A or B

This means that we can simplify the code snippet without changing the program’s behav
ior:

6 Logic

if (x > 0 || y > 100)

(further instructions)

Rewriting a logical expression involving many variables in the simplest form is both
difficult and important. Simplifying expressions in software might slightly increase the
speed of your program. But, more significantly, chip designers face essentially the same
challenge. However, instead of minimizing && and || symbols in a program, their job is
to minimize the number of analogous physcial devices on a chip. The payoff is potentially
enormous: a chip with fewer devices is smaller, consumes less power, has a lower defect
rate, and is cheaper to manufacture.

1.3 A Cryptic Notation

Programming languages use symbols like && and ! in place of words like “and” and
“not”. Mathematicians have devised their own cryptic symbols to represent these words,
which are summarized in the table below.

English Cryptic Notation

“not P” ¬P or P
“P and Q” P ∧Q
“P or Q” P ∨Q

“P implies Q” or “if P then Q” P ⇒ Q
“P if and only if Q” P ⇔ Q

For example, using this notation, “If P and not Q, then R” would be written:

R(P ∧ ¬Q) ⇒

This symbolic language is helpful for writing complicated logical expressions com
pactly. But in most contexts ordinary words such as “or” and “implies” are much easier
to understand than symbols such as ∨ and ⇒. So we’ll use this symbolic language spar
ingly, and we advise you to do the same.

1.4 Logically Equivalent Implications

Are these two sentences saying the same thing?

If I am hungry, then I am grumpy.

If I am not grumpy, then I am not hungry.

7 Logic

We can settle the issue by recasting both sentences in terms of propositional logic. Let P
be the proposition “I am hungry”, and let Q be “I am grumpy”. The first sentence says
“P implies Q” and the second says “(not Q) implies (not P)”. We can compare these two
statements in a truth table:

P
T T T T
T F F F
F T T T
F F T T

Q P implies Q (not Q) implies (not P)

Sure enough, the two statements are precisely equivalent. In general, “(not Q) implies
(not P)” is called the contrapositive of “P implies Q”. And, as we’ve just shown, the
two are just different ways of saying the same thing. This equivalence is mildly useful
in programming, mathematical arguments, and even everyday speech, because you can
always pick whichever of the two is easier to say or write.

In contrast, the converse of “P implies Q” is the statement “Q implies P”. In terms of
our example, the converse is:

If I am grumpy, then I am hungry.

This sounds like a rather different contention, and a truth table confirms this suspicion:

P
T T T T
T F F T
F T T F
F F T T

Q P implies Q Q implies P

Thus, an implication is logically equivalent to its contrapositive, but is not equivalent to
its converse.

One final relationship: an implication and its converse together are equivalent to an if
and only if statement. Specifically, these two statements together:

If I am grumpy, then I am hungry.
If I am hungry, then I am grumpy.

are equivalent to the single statement:

I am grumpy if and only if I am hungry.

Once again, we can verify this with a truth table:

P Q
T T
T F
F T
F F

(P implies Q) and (Q implies P)
T T
F F
F F
T T

Q if and only if P

8 Logic

SAT

A proposition is satisfiable if some setting of the variables makes the proposition
true. For example, P ∧ ¬Q is satisfiable because the expression is true when P is true
and Q is false. On the other hand, P ∧ ¬P is not satisfiable because the expression
as a whole is false for both settings of P . But determining whether or not a more
complicated proposition is satisfiable is not so easy. How about this one?

(P ∨Q ∨R) ∧ (¬P ∨ ¬Q) ∧ (¬P ∨ ¬R) ∧ (¬R ∨ ¬Q)

The general problem of deciding whether a proposition is satisfiable is called SAT.
One approach to SAT is to construct a truth table and check whether or not a T ever
appears. But this approach is not very efficient; a proposition with n variables has a
truth table with 2n lines. For a proposition with just 30 variables, that’s already over
a billion!

Is there an efficient solution to SAT? Is there some ingenious procedure that quickly
determines whether any given proposition is satifiable or not? No one knows. And
an awful lot hangs on the answer. An efficient solution to SAT would immediately
imply efficient solutions to many, many other important problems involving packing,
scheduling, routing, and circuit verification. This sounds fantastic, but there would
also be worldwide chaos. Decrypting coded messages would also become an easy
task (for most codes). Online financial transactions would be insecure and secret
communications could be read by everyone.

At present, though, researchers are completely stuck. No one has a good idea how
to either solve SAT more efficiently or to prove that no efficient solution exists. This
is the outstanding unanswered question in computer science.

2 Sets and Sequences

Propositions of the sort we’ve considered so far are good for reasoning about individual
statements, but not so good for reasoning about a collection of objects. Let’s first review
a couple mathematical tools for grouping objects and then extend our logical language to
cope with such collections.

A set is a collection of distinct objects, which are called elements. The elements of a set
can be just about anything: numbers, points in space, or even other sets. The conventional
way to write down a set is to list the elements inside curlybraces. For example, here are

Logic 9

some sets:

N = {0, 1, 2, 3, . . .} the natural numbers
C = {red, blue, yellow} primary colors
D = {Nifty, Friend, Horatio, PrettyPretty} dead pets
P = {{a, b} , {a, c} , {b, c}} a set of sets

The elements of a set are required to be distinct; a set can not contain multiple copies of
the same element. The order of elements is not significant, so {x, y} and {y, x} are the
same set written two different ways. The expression e ∈ S asserts that e is an element of
set S. For example, 7 ∈ N and blue ∈ C, but Wilbur �∈ D yet.

Sets are simple, flexible, and everywhere. You’ll find at least one set mentioned on
almost every page in these notes.

2.1 Some Popular Sets

Mathematicians have devised special symbols to represent some common sets.

symbol set elements
∅ the empty set none
N natural numbers {0, 1, 2, 3, . . .}
Z integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

1 5Q rational numbers
2
, −

3
, 16, etc.

R real numbers π, e, −9, etc.
C complex numbers i, 19

2
,
√

2 − 2i, etc.

A superscript + restricts a set to its positive elements; for example, R+ is the set of positive
real numbers.

2.2 Comparing and Combing Sets

The expression S ⊆ T indicates that set S is a subset of set T , which means that every
element of S is also an element of T . For example, N ⊆ Z (every natural number is an
integer) and Q ⊆ R (every rational number is a real number), but C �⊆ Z (not every
complex number is an integer).

As a memory trick, notice that the ⊆ points to the smaller set, just like a ≤ sign points
to the smaller number. Actually, this connection goes a little further: there is a symbol ⊂
analogous to <. Thus, S ⊂ T means that S is a subset of T , but the two are not equal. So
for every set A, A ⊆ A, but A �⊂ A.

There are several ways to combine sets. Let’s define a couple for use in examples:

X = {1, 2, 3}
Y = {2, 3, 4}

10	 Logic

•	 The union of sets X and Y (denoted X ∪ Y) contains all elements appearing in X or
Y or both. Thus, X ∪ Y = {1, 2, 3, 4}.

•	 The intersection of X and Y (denoted X ∩ Y) consists of all elements that appear in
both X and Y . So X ∩ Y = {2, 3}.

•	 The difference of X and Y (denoted X − Y) consists of all elements that are in X ,
but not in Y . Therefore, X − Y = {1} and Y − X = {4}.

Sometimes one is exclusively concerned with subsets of a certain large set. For exam
ple, we might be focused on subsets of a the real numbers. In this case, we can talk about
the complement of a set Z, which consists of all elements not in Z and is denoted Z. For
example, when we’re working with the real numbers R, the complement of the positive
real numbers is the set of negative real numbers together with zero.

2.3 Sequences

Sets provide one way to group a collection of objects. Another way is in a sequence, which
is a list of objects called terms or components. Short sequences are commonly described
by listing the elements between parentheses; for example, (a, b, c) is a sequence with three
terms.

While both sets and sequences perform a gathering role, there are several differences.

•	 The elements of a set are required to be distinct, but terms in a sequence can be the
same. Thus, (a, b, a) is a valid sequence, but {a, b, a} is not a valid set.

•	 The terms in a sequence have a specified order, but the elements of a set do not. For
example, (a, b, c) and (a, c, b) are different sequences, but {a, b, c} and {a, c, b} are the
same set.

•	 The empty set is usually denoted ∅, and the empty sequence is typically λ.

The product operation is one link between sets and sequences. A product of sets,
S1 × S2 × . . . × Sn, is a new set consisting of all sequences where the first component is
drawn from S1, the second from S2, and so forth. For example, N × N is the set of all pairs
of natural numbers:

N × N = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), . . .}

A product of n copies of a set S is denoted Sn . For example, {0, 1} 3 is the set of all 3bit
sequences:

{0, 1} 3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

�

Logic 11

3 Predicates

A predicate is a proposition whose truth depends on the value of one or more variables.
For example,

“n is a perfect square”

is a predicate whose truth depends on the value of n. The predicate is true for n = 4 since
4 is a prefect square, but false for n = 5 since 5 is not a perfect square.

Like other propositions, predicates are often named with a letter. Furthermore, a
functionlike notation is used to denote a predicate supplied with specific variable val
ues. For example, we might name our earlier predicate P :

P (n) = “n is a perfect square”

Now P (4) is true, and P (5) is false.

This notation for predicates is confusingly similar to ordinary function notation. If P
is a predicate, then P (n) is either true or false, depending on the value of n. On the other
hand, if P is an ordinary function, like n2 + 1, then P (n) is a numerical quantity. Students
frequently confuse these two, but that’s what thumbscrews are for.

3.1 Quantifying a Predicate

There are a couple kinds of assertion one commonly makes about a predicate: that it is
sometimes true and that it is always true. For example, the predicate

2“x ≥ 0”

is always true when x is a real number. On the other hand, the predicate
2“5x − 7 = 0”

is only sometimes true; specifically, when x = ± 7/5.

There are several ways to express the notions of “always true” and “sometimes true”
in English. The table below gives some general formats on the left and specific examples
using those formats on the right. You can expect to see such phrases hundreds of times in
mathematical writing!

Always True

“For all n, P (n) is true.”
“P (n) is true for every n.”

“For all x, x2 ≥ 0.
“x2 ≥ 0 for every x.”

Sometimes True
2“There exists an n such that P (n) is true.” “There exists an x such that 5x − 7 = 0”.

2“P (n) is true for some n.” “5x − 7 = 0 for some x.”
2“P (n) is true for at least one n.” “5x − 7 = 0 for at least one x.”

12 Logic

All these sentences quantify how often the predicate is true. Specifically, an assertion
that a predicate is always true is called a universal quantification, and an assertion that a
predicate is sometimes true is an existential quantification. Sometimes the English sen
tences are unclear with respect to quantification:

“If you can solve any problem we come up with, then you get an A for the course.”

The phrase “you can solve any problem we can come up with” could reasonably be inter
preted as either a universal or existential quantification:

“you can solve every problem we come up with”
“you can solve at least one problem we come up with”

In any case, notice that this quantified phrase appears inside a larger ifthen statement.
This is quite normal; quantified statements are themselves propositions and can be com
bined with and, or, implies, etc. just like any other proposition.

3.2 More Cryptic Notation

There are symbols to represent universal and existential quantification, just as there are
symbols for “and” (∧), “implies” (⇒), and so forth. In particular, to say that a predicate
P (n) is true for all values of n in some set S, one writes:

∀n ∈ S P (n)

The symbol ∀ is read “for all”, so this whole expression is read “for all n in S, P (n) is
true”. To say that a predicate P (n) is true for at least one value of n in S, one writes:

∃n ∈ S P (n)

The backwardE is read “there exists”. So this expression would be read, “There exists an
n in S such that P (n) is true. The symbols ∀ and ∃ are always followed by a variable and
then a predicate, as in the two examples above.

As an example, let P be the set of problems we come up with, S(x) be the predicate
“You can solve problem x”, and A be the proposition, “You get an A for the course.” Then
the two different interpretations of

“If you can solve any problem we come up with,
then you get an A for the course.”

can be written as follows:

(∀x ∈ P S(x)) ⇒ A (∃x ∈ P S(x)) ⇒ A

Logic 13

3.3 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, Goldbach’s
Conjecture states:

“Every even integer greater than 2 is the sum of two primes.”

Let’s write this more verbosely to make the use of quantification more clear:

“For every even integer n greater than 2,
there exist primes p and q such that n = p + q.”

Let E be the set of even integers greater than 2, and let P be the set of primes. Then we
can write Goldbach’s Conjecture in logic notation as follows:

� �� n = p + q∀n ∈ E� ∃�
p ∈ P��∃q ∈ P�

for every even there exist primes
integer n ≥ 2 p and q such that

3.4 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) changes the
meaning of a proposition. For another example, let’s return to one of our initial, confusing
statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be the set of
Americans, let D be the set of dreams, and define the predicate H(a, d) to be “American a
has dream d.”. Now the sentence could mean there is a single dream that every American
shares:

∃d ∈ D ∀a ∈ A H(a, d)

Or it could mean that every American has an individual dream:

∀a ∈ A ∃d ∈ D H(a, d)

Swapping quantifiers in Goldbach’s Conjecture creates a patently false statement:

� �� n = p + q∃p ∈ P��∃q ∈ P�
∀� n ∈ E�

there exist primes for every even

p and q such that integer n ≥ 2

� �
| �

14 Logic

3.5 Negating Quantifiers

There is a duality between the two kinds of quantifiers. The following two sentences
mean the same thing:

“It is not the case that everyone likes to snowboard.”
“There exists someone who does not like to snowboard.”

In terms of logic notation, this follows from a general equivalence:

P (x)¬∀x P (x) ⇔ ∃x ¬

Similarly, these sentences mean the same thing:

“There does not exist anyone who likes skiing over magma.”
“Everyone dislikes skiing over magma.”

We can express the equivalence in logic notation this way:

¬∃x Q(x) ⇔ ∀x ¬Q(x)

The general principle is that moving a “not” across a quantifier changes the kind of quantifier.

3.6 Set Builder Notation

One specialized, but important use of predicates is in set builder notation. We’ll often
want to talk about sets that can not be described very well by listing the elements explic
itly or by taking unions, intersections, etc. of easilydescribed sets. Set builder notation
often comes to the rescue. The idea is to define a set using a predicate; in particular, the set
consists of all values that make the predicate true. Here are some examples of set builder
notation:

A = n is a prime and n = 4k + 1 for some integer k}{n ∈ N | �
3B = x ∈ R x − 3x + 1 > 0

C = a + bi ∈ C a 2 + 2b2 ≤ 1|

The set A consists of all natural numbers n for which the predicate

“n is a prime and n = 4k + 1 for some integer k”

is true. Thus, the smallest elements of A are:

5, 13, 17, 29, 37, 41, 53, 57, 61, 73, . . .

Logic 15

Trying to indicate the set A by listing these first few elements wouldn’t work very well;
even after ten terms, the pattern is not obvious! Similarly, the set B consists of all real
numbers x for which the predicate

3 x − 3x + 1 > 0

is true. In this case, an explicit description of the set B in terms of intervals would require
solving a cubic equation. Finally, set C consists of all complex numbers a + bi such that:

a 2 + 2b2 ≤ 1

This is an ovalshaped region around the origin in the complex plane.

	Propositions
	Combining Propositions
	``Not'', ``And'' and ``Or''
	``Implies''
	``If and Only If''

	Propositional Logic in Computer Programs
	A Cryptic Notation
	Logically Equivalent Implications

	Sets and Sequences
	Some Popular Sets
	Comparing and Combing Sets
	Sequences

	Predicates
	Quantifying a Predicate
	More Cryptic Notation
	Mixing Quantifiers
	Order of Quantifiers
	Negating Quantifiers
	Set Builder Notation

