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Induction


1 Proof by Induction 

1.1 The Induction Axiom 

Induction is by far the most powerful and commonly-used proof technique in Discrete Mathemat­
ics and Computer Science. In fact, one could say that applicabillity of induction is the defining 
characteristic of discrete, as opposed to continuous, Mathematics. 

The standard formulation of induction involves proving properties of the natural numbers, N ::= 
0, 1, 2, . . . . But since most objects of interest in Computer Science—computer programs, task 
schedules, game outcomes, steps in a computation—can be numbered1, induction applies widely. 

Induction captures a style of reasoning which is so obvious and familiar that its use often goes 
unnoticed. For example, suppose we had some recipe for assigning a unique “color” to every 
natural number. One recipe might, for example, assign red to even numbers and blue to odd 
numbers. Another recipe would be to color even numbers red, odd prime numbers blue, and all 
other numbers white. Now suppose someone formulates a recipe for natural number coloring, 
but doesn’t tell you exactly what the recipe is. But they do tell you that zero is colored red, and 
that the coloring has the property that, whenever some number is red, then the next number is 
red. Can there be any doubt about what the unknown coloring is? Of course not: every number is 
colored red! 

The Axiom of Induction essentially just this: if zero is red, and the next number after a red number 
is also red, then all numbers are red. So the Induction Axiom is both simple and obvious. What’s 
not so obvious is how much mileage we get by using it. For example, let’s prove by induction that 

1 + 2 + · · · + n + (n + 1) = 
(n + 2)(n + 1) 

, (1)
2 

for all n ∈ N. The trick for applying Induction is to use this equation for assigning colors to 
numbers: color the number n red when equation (1) holds, otherwise color it white. To verify that 
equation (1) holds for all n ∈ N, we must show that every number is red. Induction allows us to 
prove this using simple arithmetic. 

To begin with, we have to show that zero is red. In other words, we have to show that zero satisfies 
equation (1). Now when n = 0, the lefthand side of the equation is simply 1 and the righthand 
side is (0 + 2)(0 + 1)/2, which equals 1. So zero is red. 

Copyright ©  2002, Prof. Albert R. Meyer. 
1A variant of induction, called structural induction, is specially tailored for proof about recursively defined data 

structures and processes; structural induction will be discussed in later notes. 



2 Course Notes 2: Induction 

Next, we suppose we have arrived at some natural number, m, which is colored red. We only have 
to show that the next number, m + 1, must also be red. Then by Induction all natural numbers are 
red. That is, equation (1) holds for all n ∈ N. 

Now in this case, saying that m is red means 

1 + 2 + · · · + m + (m + 1) = 
(m + 2)(m + 1) 

. (2)
2 

This is called the induction hypothesis.


How do we show the next number, m + 1, is red? We have to show:


1 + 2 + · · · + (m + 1) + ((m + 1) + 1) = 
((m + 1) + 2)((m + 1) + 1) 

. (3)
2 

But that’s easy using the redness of m and rules of arithmetic: 

1 + 2 + · · · + (m + 1) + ((m + 1) + 1) =[1 + 2 + · · · + (m + 1)] + (m + 2) 
=[1 + 2 + · · · + (m + 1)] + (m + 2) (associativity of +) 

=
(m + 2)(m + 1) 

+ (m + 2) (by (2))
2 

=( 
m + 1 

+ 1)(m + 2)
2 

2
=( 

m 
2
+ 1 

+ 
2
)(m + 2) 

(m + 1) + 2
(m + 2)= 

2 
((m + 1) + 2)((m + 1) + 1)

= .
2 

Here associativity for sums tells us it’s ok to parenthesize the sum in any convenient way, and the 
unlabelled equalities each follow by simple arithmetic. So we have finished the proof by induction 
that (2) 

The Induction Axiom is usually stated formally using logical formulas. To begin with, let’s con­
sider some fixed coloring, and interpret the predicate P (n) to mean that “n is colored red.” Then 
we translate our informal language in logical formulas as follows: “we have a coloring that makes 
zero red” simply translates into P (0). The clause “whenever some number is red, then the next 
number is red,” translates first into “whenever some number, call it, m, satisfies P (m), then 
P (m + 1).” We can translate the “whenever some number m” phrase into a universal quantifier 
and the “if . . . then” into −→, so the whole phrase translates into 

∀m ∈ N P (m) −→ P (m + 1). 

The conclusion that “every number is colored red” translates into ∀n P (n). So now we can for­
mally state the 

Axiom (Induction). Suppose that P (0) is true and 

∀m ∈ N P (m) −→ P (m + 1). 

Then ∀n ∈ N P (n) is true. 
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In fact, we can get rid of the English altogether and formulate


Rule 1.1 (Induction).


P (0), ∀m ∈ N P (m) −→ P (m + 1) 
∀n ∈ N P (n). 

We saved this last formulation to last because, until you’re experienced translating logical formu­
las into intelligible language, the formula can hide how obvious and simple the Induction Axiom 
really is. Actually, you’ll often see the Induction Axiom and Rule stated with n in place of m, 
which can make them even harder to decipher. But since m is a bound variable in the second 
hypothesis of the rule, it doesn’t matter if we rename it to be n. 

1.2 Ellipses 

Incidentally, the argument above could be criticized because notation such as 1 + 2 + 3 + · · · + n 
may seem imprecise. Alway watch out for notation with “· · · ” or “ . . . ” in it (the dots are called 
an “ellipsis”). This notation is common because it is convenient. The idea is to show enough of a 
sequence that anyone can figure out the pattern needed to fill in the ellipsis. We could have been 
more precise by using summation notation instead, namely, 1 + 2 + 3 + · · · + n could be written 
either as 

n 

i 
i=1 

or as 

i. 
1≤i≤n 

In this notation, the pattern of terms in the summation is made explicit. In two important special 
cases, the definition of the summation 1 + 2 + 3 + · · · + n requires some care. We already observed 
that if n = 1, then 1 + 2 + 3 + · · · + n = 1≤i≤1 i = 1. That is, There is only one term in the 
summation; the appearance of 2 and 3 to indicate the pattern is misleading in this case, because 
they don’t appear. 

What about when n = 0? Then 1≤i≤0 i is a sum over an empty set of i’s. That is, there are no terms 
at all in the summation. In this case, the sum is defined to be zero by convention. This convention 
is useful, because, for example, we can say that for any function f : N → R,   

f (i) =  f (i) + f (n + 1) 
1≤i≤n+1 1≤i≤n 

for all n ∈ N, even for n = 0. 

1.3 Proof Format 

The text of a proof by induction should consist of four parts. We’ve aleady seen each of these parts 
in the proof of equation (1). 
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1.	 State that the proof is by induction. This immediately conveys the general structure of the 
argument. 

2.	 Specify the induction hypothesis: P (n). Sometimes, the choice of P (n) will come directly 
from the theorem statement. In the proof above, P (n) was the equation (1) to be proved. 
Other times, the choice of P (n) is not obvious at all; we will see an example of this soon. 

3. The basis step: prove P (0). The “basis step” or “base case” is a proof of the predicate P (0). 

4.	 The inductive step: prove that ∀m ∈ N P (m) −→ P (m + 1). Begin the inductive step by 
writing, “For m ≥ 0, assume P (m) in order to prove P (m + 1).” (You can substitute in the 
statements of the predicates P (m) and P (m + 1) if the reminder seems helpful.) Then verify 
that P (m) indeed implies P (m + 1) for every m ∈ N. 

In the case of equation (1), we used induction purely as a proof technique; it gave little insight into 
why the theorem is true. 

Furthermore, while induction was essential in proving the summation equal to n(n + 1)/2, it did 
not help us find this formula in the first place. We’ll turn to the problem of finding sums of series 
in a couple weeks. 

1.4 Induction Examples 

This section contains several examples of induction proofs. We begin with an example about 
Fibonacci numbers, followed by an example from elementary plane geometry, and finally an ap­
plication of induction to a design problem vital to the future of Computer Science at MIT. Then 
we illustrate some typical mistakes in using induction by proving (incorrectly!) that all horses are 
the same color and that camels can carry an unlimited amount of straw. 

1.4.1 A Fibonacci Identity 

Fibonacci was a thirteenth century mathematician who invented Fibonacci numbers to model pop­
ulation growth (or rabbits, see Rosen, pp. 205, 310). The first two Fibonacci numbers are 0 and 
1, and each subsequent Fibonacci number is the sum of the two previous ones. The n Fibonacci 
numbers is denoted Fn. In other words, the Fibonacci numbers are defined defined recursively by 
the rules 

F0 ::= 0, 
F1 ::= 1, 
Fi ::= Fi−1 + Fi−2, for i ≥ 2. 

Here, we’re using the notation “::=” to indicate that an equality holds by definition. The first few 
Fibonacci numbers are 

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . 

Fibonacci numbers come up in several different settings, but they have captivated a continued 
mathematical following out of proportion to their importance in applications because they have a 
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rich and surprising collection of properties, such as the one expressed in the following theorem. 
The theorem is a good thing to forget if you run low on brain space, its proof just provides a nice 
illustration of induction. 

Theorem 1.2. ∀n ≥ 1, F1
2 + F2

2 + · · · + Fn 
2 = FnFn+1 

For example, for n = 4 we have 12 + 12 + 22 + 32 = 15 = 3 · 5. 

Let’s look for a proof by induction. First, the theorem statement suggests that the induction hy­
pothesis P (n) be 

n 

P (n) ::= Fi 
2 = FnFn+1 . 

i=1 

. 

Second, we want to identify the gap between P (m) and P (m + 1). The predicate P (m + 1) states 
that m+1 Fi 

2 = Fm+1Fm+2. Now the plan is to use P (m) to reduce this statement to a simpleri=1 
assertion. An easy way is to subtract the equation in predicate P (m). Taking the P (m+1) equation 
“minus” P (m) equation gives: 

F 2 
m+1 = Fm+1Fm+2 − FmFm+1. 

This is the Fibonacci recurrence in disguise; dividing by Fm+1 and moving a term gives Fm + 
Fm+1 = Fm+2. This is the extra fact need to bridge the gap between P (m) and P (m + 1) in the 
inductive step. The full proof is written below. 

Proof. The proof is by induction. Let P (n) be the proposition that 
� 

i
n 
=1 Fi 

2 = FnFn+1. In the base 
case, P (0) is true because 0 = F0F1 = 0 · 1 = 0. For m ≥ 0, assume 

� m �	m+1 
i=1 Fi 

2 = FmFm+1 to prove 

i=1 Fi 
2 = Fm+1Fm+2. 

For all m ≥ 0, the equation Fm + Fm+1 = Fm+2 holds by the definition of the Fibonacci num­
bers. Multiplying both sides by Fm+1 and rearranging terms gives F 2 

m+1 = Fm+1Fm+2 − FmFm+1. 
Adding this identity to the equation in the proposition P (m) gives: 

m 

F 2 
m+1 + Fi 

2 = (Fm+1Fm+2 − FmFm+1) + FmFm+1 

i=1 

m+1 

Fi 
2 = Fm+1Fm+2 

i=1 

This proves that for all m ∈ N, P (m) −→ P (m + 1) and completes the proof. 

1.4.2 Geometry 

Definition 1.3. A convex polygon is a polygon such that any straight line between any two ver­
tices doesn’t leave the polygon. 

Theorem. The sum of the interior angles in any n-sided convex polygon is exactly (n − 2) · 180 degrees, 
for all n ≥ 3. 
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Figure 1: One of the L-shaped tiles that will be used in the courtyard of the new computer science 
building. 

Proof. The proof is by induction. The induction hypothesis is P (n)::= The sum of the interior 
angles in any n-sided convex polygon is exactly (n − 2) · 180 degrees. 

Base case n = 3: An 3-sided polygon is a triangle, whose interior angles were shown always to 
sum to 180 degrees by Euclid. 

Inductive step: Assume that P (m) holds for some m ≥ 3. We must show that P (m + 1) holds. 

So let X be any (m + 1)-vertex convex polygon, say with successive vertices x1, x2, . . . , xm+1. Let 
Y be the polygon with vertices x1, x2, . . . , xm. That is, Y is obtained by cutting out one vertex 
from X . Now Y is also a convex polygon (proof left to the reader!), so by induction hypothesis 
P (m), the sum of the interior angles of Y is (m − 2)180. Now let T be the triangle with vertices 
xm, xm+1, x1. The sum of the interior angles in X is the sum of those in Y plus the sum of those 
in T (proof again left to the reader: draw a picture 2). So the sum of the interior angles in X is 
(m−2)180+180 = ((m+1)−2)180. Since X was arbitrary, we conclude that the sum of the interior 
angles of any (m + 1)-sided convex polygon is ((m − 2) + 1)180. That is, P (m + 1) holds. 

Note that this induction argument started with base case n = 3 rather than 0. The induction step 
proved that P (m) −→ P (m + 1) for all m ≥ 3. The final conclusion was that ∀n ≥ 3 P (n). This is 
a valid variant of induction. 

1.4.3 The Fate of Computer Science at MIT 

In the preceding examples, induction has served purely as a proof technique. However, it can be 
useful more generally in problem solving. 

MIT is constructing a new Stata Center on the site of the old Building 20. Designed by the world 
famous architect Frank Gehry, the current cost of the project is budgeted at around $200 million. 
The Center includes two Computer Science Buildings, one of which is already named after Bill 
Gates in recognition of his $20 million donation toward construction. But the budget has grown 
enormously—it was originally supposed to be $100 million. Despite the dramatic recent declines 
in the stock market, Bill can still afford to make another contribution to cover the shortfall3, but it 
will take some special enticement. 

Gehry has designed an atrium with a spacious central plaza to be tiled in L-shaped tiles, and MIT 
is thinking about offering to place a statue of Bill in the courtyard. 

The planned courtyard consists of 2n × 2n squares. Most of these will be covered by L-shaped 
tiles, each covering three squares as shown in Figure 1. However, one square will be covered by 

2see Velleman, example 6.2.3 
3Up to this point, the story is all true. 
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Bill 

Figure 2: Example with n = 2: a legal tiling of a 4x4 courtyard. 

the statue of Bill; in fact, this should be one of the central squares. The problem is to find a suitable 
tiling. An example solution for the case of n = 2 is shown. 

(The phrase “central squares” is a little ambiguous. If n = 0, then the courtyard is a single square, 
and Bill takes it. If n > 0, then there are four central squares, and Bill will take any of them.) 

Let’s try to prove by induction that such a tiling exists. As usual, we first try to lift the inductive 
hypothesis directly from the theorem statement. 

Theorem 1.4. For all n ≥ 0 there exists a tiling of a 2n × 2n courtyard with Bill in a central square. 

Proof. (doomed attempt) The proof is by induction. Let P (n) be the proposition that there exists a 
tiling of a 2n × 2n courtyard with Bill in the center. In the base case, P (0) is true because Bill fills 
the whole courtyard. For n ≥ 0, assume that there is a tiling of a 2n × 2n courtyard with Bill in the 
center to prove that there is is a legal tiling of a 2n+1 × 2n+1 courtyard with Bill in the center... 

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the center is of no obvious 
help in tiling a larger courtyard with Bill in the center. The usual recipe for finding an inductive 
proof will not work! 

Sometimes, making the induction hypothesis stronger makes a proof easier. For example, we could 
make P (n) the proposition that for every position of Bill in a 2n × 2n courtyard, there exists a tiling 
of the remainder. This hypothesis is “stronger” in the sense that the earlier claim was just a special 
case. However, when we have to prove P (n) −→ P (n + 1), we will be in better shape because we 
can assume P (n), which is now a more general, more useful statement. 

Method 1. If you can not show that P (n) −→ P (n + 1) in a proof by induction, change the induc­
tion hypothesis; in particular, strengthening the hypothesis may make the proof easier. 

Even with this new hypothesis, finding the right way to prove that P (n) −→ P (n + 1) requires 
some work. 

Proof. (successful attempt) The proof is by induction. Let P (n) be the proposition that if any one 
square of a 2n × 2n courtyard must be left blank, then there exists a tiling of the remainder. In the 
base case, P (0) is true because if the one and only square is left blank, then there exists a tiling of 
the remainder (which is nothing). For n ≥ 0, assume that if any one square of a 2n × 2n courtyard 
must be left blank, then there exists a tiling of the remainder. We will use this to prove that if any 
one square of a 2n+1 × 2n+1 courtyard must be left blank, then there exists a tiling of the remainder. 
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Divide the 2n+1 ×2n+1 courtyard into four quadrants, each 2n ×2n . One will contain the square that 
must be left blank and can be tiled by induction. Now place a tile in the center of the courtyard so 
that it covers one square in each remaining quadrant. All that remains is to tile each of these three 
quadrants, excluding the one square in each that is already covered. But this can also be done by 
induction. This proves that ∀n ≥ 1 P (n) −→ P (n + 1). The theorem follows as a special case in 
which a central square is left blank during tiling and is later covered by a statue of Bill. 

This proof has two nice properties. First, we have a stronger result; if Bill wants his statue on the 
edge of the courtyard, away from the pigeons, we can accommodate him. Second, not only does 
the proof guarantee that a tiling exists, it actually gave a recursive procedure for producing one. For 
example: To tile a 23 × 23 square leaving the upper right corner empty, divide it into 4, put one tile 
in the center, and recursively tile the 4 pieces, each with one square missing. (See Figure 3) 
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Figure 3: A valid tiling for an 8x8 square leaving the upper right corner empty 

1.4.4 A False Proof 

False Theorem 1.5. All horses are the same color. 

Proof. The proof is by induction. Let P (n) be the proposition that in any set of n horses, all the 
horses are the same color. This is true in the base case n = 1, since there is only one horse in the 
set. For n ≥ 1, assume that in every set of n horses, all are the same color in order to prove that 
in every set of n + 1 horses, all are the same color. Consider a set of n + 1 horses h1, h2, . . . , hn+1. 
By induction, h1, h2, . . . , hn all are the same color. Likewise, h2, . . . , hn+1 all are the same color. 
Therefore, h1, h2, . . . , hn+1 must all share the same color, namely the color of h2. This proves that 
P (n) −→ P (n + 1) for any n, and so completes the proof. 

Where is the bug?—it’s in the sentence beginning “Therefore.” The “ . . . ” notation helps create 
confusion about an implicit assumption that the sets {h1, h2, . . . , hn} and {h2, . . . , hn+1} overlap 
at h2, and therefore are colored the same. But if n = 1, then the first set is just {h1} and the second 
is {h2}, and they do not overlap at all. 

Because of this bug, we have really only proven P (1), and P (n) −→ P (n + 1) for n ≥ 2. But we 
haven’t proved that P (1) −→ P (2), which of course does not hold. 
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1.4.5 Another False Proof 

False Theorem 1.6. A camel can always carry all the straw in a barn. 

Proof. The proof is by induction. Let P (n) be the predicate, “The camel can carry n pieces of 
straw.” The base case P (1) is true because a camel can certainly carry one piece of straw. In the 
inductive step, assume that the camel can carry n pieces of straw to prove that it can carry n + 1 
pieces. But if it can carry n pieces of straw, then surely it can carry n + 1: one little piece of straw 
won’t make any difference. Therefore P (n) −→ P (n + 1), completing the proof. 

The flaw here is in the bogus assertion that the camel can carry n + 1 straws if it can carry n. Just 
because it is hard to say exactly for which n this is false, we have no doubt that there is an n that 
finally exceeds the camel’s carrying ability. There will always be “a straw that broke the camel’s 
back.” 

2 Strong Induction 

“Strong” induction4 is a variation of the induction proof method. Strong induction is quite similar 
to ordinary induction, but is sometimes easier to use when solving problems. 

The difference between ordinary induction and strong induction is subtle. Both proofs can be 
written with nearly the same structure. The only difference is that in an ordinary induction proof 
we assume only P (n) in order to prove P (n +1). In a strong induction proof, we get to assume all 
of P (0), P (1), . . . , P (n) in order to prove P (n + 1). This can be a big help. When we try to prove 
P (n +1) in the inductive step, we do not have just one fact in hand, but rather a whole list of facts! 

2.1 The Strong Induction Axiom 

Like ordinary induction, strong induction can be expressed as an axiom: 

Axiom (Strong Induction). If P (0) is true and ∀n ≥ 0 (P (0) ∧ P (1) ∧ · · · ∧ P (n)) −→ P (n + 1), 
then P (n) is true for all n ≥ 0. 

The expression (P (0) ∧ P (1) ∧ · · · ∧ P (n)) −→ P (n + 1) might be a little hard to decrypt. It just 
means that P (n + 1) logically follows if we accept all the statements P (0), P (1), . . . , P (n). Writing 
this as a rule with logical formulas makes this explicit 

Rule 2.1. [Strong Induction] 

P (0), ∀n ∈ N ∀m ≤ n P (m) −→ P (m + 1) 
∀n ∈ N P (n) 

4Strong Induction is the same as what Rosen calls the Second Principle of Induction 
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Strong induction is as obvious a principle as ordinary induction, so we could confidently take 
it as another axiom. Actually, we don’t have to make it an axiom, because we could prove the 
correctness of strong induction by very elementary reasoning starting from the induction axiom. 

There’s also another interesting way to justify strong induction without using ordinary induction 
at all. The proof is by contradiction: suppose that some statement in the list P (0), P (1), . . . , P (n), . . . 
was actually false. Since there’s some false statement in the list, there must be a first one, say P (k) 
for some k > 0, that is false. (The number k has to be > 0 because we know P (0) is true.) Now 
we know that P (0), P (1), . . . , P (k − 1) are true, since P (k) is the first false statement. But since 
P (k) logically followed from the preceding statements P (0), P (1), . . . , P (k − 1), it must be true, 
contradicting our assumption that it was false. So there can’t be any false statement in the list, that 
is, P (n) is true for all n ∈ N. 

Of course, we do not prove axioms; we just accept them as facts. But in this case we didn’t 
need to assume a strong induction axiom, because we were able to prove the correctness of strong 
induction, and we did it without even using induction! How come? Well, if you look back at the 
previous argument, you can see we made a key assumption: that there exists a first false statement, 
P (k). This assumption is an instance of another axiom called the Least Number Principle which says 
that in any set of one or more natural numbers, there must be a least (smallest) number. So we have 
proved the soundness of strong induction, and could similarly prove the soundness of ordinary 
induction too, by elementary reasoning from the Least Number Principle. This may help you 
think more clearly about why induction works. 

2.2 Postage Stamp Example 

Now we’re ready to solve a problem using strong induction. 

Problem: Given an unlimited supply of 3 cent and 5 cent stamps, what postages are possible? 

Solution: Let’s first try to guess the answer and then try to prove it. A table that shows the values 
of all possible combinations of 3 and 5 cent stamps will help. The column heading is the number 
of 5 cent stamps and the row heading is the number of 3 cent stamps. 

0 1 2 3 4 5 . . . 
0 0 5 10 15 20 25 . . . 
1 3 8 13 18 23 . . . 
2 6 11 16 21 . . . 
3 9 14 19 24 . . . 
4 12 17 22 . . . 
5 15 20 . . . 

. . . . . . . . . 

Looking at the table, a reasonable guess is that the possible postages are 0, 3, 5, and 6 cents and 
every value of 8 or more cents. Let’s try to prove this last part using strong induction. 

Claim 2.2. For all n ≥ 8, it is possible to produce n cents of postage from 3¢ and 5¢ stamps. 
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Now let’s preview the proof. The induction hypothesis will be 

P (n)::=if n ≥ 8, then n¢ postage can be produced using 3¢ and 5¢ stamps (4) 

A proof by strong induction will have the same four-part structure as an ordinary induction proof. 
The base case, P (0), won’t be interesting because P (n) is vacuously true for all n < 8. 

In the inductive step we have to show how to produce n +1 cents of postage, assuming the strong 
induction hypothesis that we know how to produce k¢ of postage for all values of k between 8 
and n. A simple way to do this is to let k = n − 2 and produce k¢ of postage; then add a 3¢ stamp 
to get n + 1 cents. 

But we have to be careful; there is a pitfall in this method. If n + 1 is 8, 9 or 10, then we can not 
use the trick of creating n + 1 cents of postage from n − 2 cents and a 3 cent stamp. In these cases, 
n − 2 is less than 8. None of the strong induction assumptions help us make less than 8¢ postage. 
Fortunately, making n + 1 cents of postage in these three cases can be easily be done directly. 

Proof. The proof is by strong induction. The induction hypothesis, P (n), is given by (4). 

Base case (n = 0): P (0) is true vacuously. 

In the inductive step, we assume that it is possible to produce postage worth 8, 9, . . . , n cents in 
order to prove that it is possible to produce postage worth n + 1 cents. 

There are four cases: 

1. n + 1 < 8: So P (n + 1) holds vacuously. 

2. n + 1 = 8: P (n + 1) holds because we produce 8¢postage using one 3¢and one 5¢stamp. 

3. n + 1 = 9: P (n + 1) holds by using three 3¢stamps. 

4. n + 1 = 10: P (n + 1) holds by using two 5¢stamps. 

5.	 n + 1 > 10: We have n ≥ 10, so n − 2 ≥ 8 and by strong induction we may assume we can 
produce exactly n − 2 cents of postage. 

So in every case, P (0) ∧ P (1) ∧ . . . P (n) −→ P (n + 1). By strong induction, we have conclude that 
P (n) is true for all n ∈ N. 

2.2.1 Induction with nonzero base cases 

To conform to the standard format, we organized the proof of Claim 2.2 with a base case of 0. But 
since we only were interested in 8 or more cents postage, it would have made more sense to start 
the induction at 8 instead of 0, to treat 8, 9 and 10 as three base cases, and to consider the induction 
step only for n + 1 > 10. From now on, we will allow induction proofs formatted with several 
base cases in this way. 

At the other extreme, we can formulate strong induction with no base case at all—just an induction 
step. Namely, we could replace the strong induction Rule 2.1 with another logical rule: 
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Rule 2.3. [Strong Induction without base case] 

∀n ∈ N (∀m < n P (m)) −→ P (n)) 
∀n ∈ N P (n) 

Notice that the base case antecedent, P (0), is missing from Rule 2.3. That’s because it’s hidden in 
the single, “induction-step” antecedent of the rule. Namely, when n = 0 the antecedent requires 
that P (0) holds as long as P (m) holds for all natural numbers m < 0. But we can say that P (m) 
does hold for all such natural numbers m < 0 since there aren’t any! In practice, using this form 
of strong induction means that even though the proof has no base case, doing the induction step 
requires handling n = 0 as a separate case. 

2.3 Strong Induction False Proof 

In the preceding proof, we were careful not to accidently assume more than is permitted by the 
strong induction axiom. Now let’s be sloppy and see what fun facts we can prove! 

False Theorem 2.4. All Fibonacci numbers are even. 

Remember that the Fibonacci numbers are denoted by F0, F1, F2, . . . where F0 = 0, F1 = 1, and 
Fi = Fi−1 + Fi−2 for i ≥ 2. The first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, . . . . 

Proof. The proof is by strong induction. Let P (n) be the predicate that Fn is even. In the base 
case, P (0) is true because F0 = 0, which is even. In the inductive step, for n ≥ 0 assume that 
F0, F1, . . . , Fn are all even in order to prove that Fn+1 is even. By definition, Fn+1 = Fn + Fn−1. 
Since both Fn and Fn−1 are even, Fn+1 is even. 

Where is the bug? If n = 0, then the statement “By definition, Fn+1 = Fn + Fn−1 ” is false. In this 
case, Fn+1 = F1, which equals 1 by definition. We forgot a special case! 

We really only proved P (0) and P (0) ∧ P (1) −→ P (2), P (1) ∧ P (2) −→ P (3), . . . . We forgot to 
check one little thing, P (1), and reached an infinite number of false conclusions! 

2.4 Winning the Game of Nim 

The game of Nim is defined as follows: Some positive number of sticks are placed on the ground. 
Two players take turns removing one, two, or three sticks. The player to remove the last stick 
loses. 

Theorem 2.5. The first player has a winning strategy iff the number of sticks, n, is not 4k + 1 for any 
k ∈ N. 

A strategy is a rule for how many sticks to remove when there are n left. We show that if n = 4k+1, 
then player 2 has a strategy that will force a win for him, otherwise, player 1 has a strategy that 
will force a win for him. 
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Proof. The induction hypothesis is: for all k ∈ N, if n = 4k + 1, then the first player loses, and if 
n = 4k, 4k + 2, or 4k + 3, the first player wins. This exhausts all possible cases for n. 

We proceed by strong induction, using starting from 1. 

Base case: n = 1. The first player has no choice but to remove 1 stick and lose, which is what the 
theorem says for this case. 

Strong inductive step: Suppose the theorem is true for numbers 1 through n and show that it is 
true for n + 1. For the inductive step, there are four cases: 

•	 n + 1 = 4k + 1: show that the first player loses. We’ve already handled the base case (1) so 
we can assume n + 1 ≥ 5. Consider what the first player might do to win: he can choose to 
remove 1, 2 or 3 sticks. If he removes one stick, the remaining number of sticks is n = 4k. 
By strong induction, the player who plays at this point has a winning strategy. So the player 
who played first will lose. 

Similarly, if the first player removes two sticks, the remaining number is 4(k − 1)+3. Again, 
he loses, by the same reasoning. Similarly, by removing 3 sticks, he loses. So, however the 
first player moves, he loses. 

• n + 1 = 4k: show that the first player can win. 

Have the first player remove 3 sticks: the second player then sees 4(k − 1) + 1 sticks, and 
loses, by the strong inductive hypothesis. 

• n + 1 = 4k + 2: show that the first player can win. 

Have the first player remove 1 stick: the second player then sees 4k + 1 sticks, and loses as 
in the previous case. 

• n + 1 = 4k + 3: show that the first player can win. 

Have the first player remove 2 sticks: again, the second player sees 4k + 1 sticks and loses. 

3 Induction, Strong Induction, and Least Number Principle 

We argued above that strong induction is better than ordinary induction, but it’s worth observing 
now that it’s only “better” from the point of view of writing up a proof, not because it can be used 
to prove more theorems. It is always possible to convert a proof using one form of induction into a 
proof using the other. 

Of course the conversion from induction to strong induction is trivial because an ordinary induc­
tion proof already is a strong induction proof—think about that! It’s conversion the other way 
that’s interesting. 
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3.1 Converting Strong Induction to Ordinary Induction [Optional] 

Here is a recipe for converting, piece-by-piece, a strong induction proof that some proposition, P (n), holds 
for all n, into an ordinary induction proof. 

• For the new, ordinary induction proof, use the hypothesis Q(n) where 

Q(n) ::= ∀m ≤ n P (m). 

•	 In the base case, the strong induction proof establishes P (0). In the new proof, we can use exactly the 
same argument to establish Q(0), since Q(0) is equivalent to P (0). 

•	 In the inductive step, the strong induction proof shows that ∀m ≤ n P (m) −→ P (n + 1). In other 
words, the old induction step proof concludes that 

Q(n) −→ P (n + 1). 

But since Q(n) implies itself, we can add an additional conclusion to the proof, namely, 

Q(n) −→ (Q(n) ∧ P (n + 1)). 

• But (Q(n) ∧ P (n + 1)) is equivalent to Q(n + 1), so we can add as a final conclusion that 

Q(n) −→ Q(n + 1). 

So by adding the previous two conclusions at the end of the induction case of the strong induction proof, 
we wind up with an ordinary induction proof of ∀n Q(n). 

3.2 Least Number Principle 

Another proof method closely related to induction depends on the 

Axiom (Least Number Principle). Every nonempty subset, S ⊆ N, has a smallest element. 

The Least Number Principle (LNP) looks nothing like the induction axiom, and it may seem obvi­
ous but useless. 

But as for obvious, note that this axiom would be false if the set of non-negative integers, N, were 
replaced by, say, the set, Z, of all integers, or the set, Q+ , of positive rational numbers. Neither 
of these sets has a least element. So the LNP is capturing something special about the natural 
numbers. 

As for useless, recall that at the end of Section 2 we used the LNP to “prove” the strong induction 
axiom. If you look back at this proof, you can read it as a recipe for converting any strong induction 
proof into an LNP proof—similar to the recipe we gave for converting a strong induction into 
ordinary induction. So LNP is at least as useful as strong induction! 

Conversely, we can use strong induction to prove the LNF. This allows us to convert any LNF 
proof into a strong induction proof, if we choose. In short, a proof using induction, strong in­
duction, or the LNF to prove some proposition can always be converted in a proof using any the 
other methods. Mathematicians like LNP, because it is often “prettier” (fewer symbols) than an 
induction proof. On the other hand, as it often involves proof by contradiction, using the LNP 
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is not always the best approach. The choice of method is really a matter of style—but style does 
matter. 

[Optional] To prove the LNP by strong induction, let P (n) be the predicate that every set of natural numbers containing 
the number n also contains a smallest element. So if we prove ∀n P (n), then we have proved the LNP, since a nonempty 
set has to contain some element n. 

Proof. We prove ∀n P (n) by strong induction. The induction hypothesis is P (n). 

Base case P (0): If a set contains 0, then 0 is its smallest element. 

strong induction step: Assume ∀m ≤ n P (m), and prove P (n + 1). 

Consider any set, S, containing the integer, n + 1. If n + 1 is actually the smallest element of S, then we are done. 
Otherwise, S must contain a smaller element m < n + 1. But then m ≤ n, and the strong induction hypothesis implies 
that S contains a smallest element, and we are done in this case too. 
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