
Massachusetts Institute of Technology Course Notes 6

6.042J/18.062J, Fall ’02: Mathematics for Computer Science

Professor Albert Meyer and Dr. Radhika Nagpal

Recursive Definitions and Structural Induction

1 Recursive Definitions

Recursive definitions say how to build something from a simpler version of the same thing. They
have two parts:

• Base case(s) that don’t depend on anything else.

• Combination case(s) that depend on simpler cases.

Here are some examples of recursive definitions:

Example 1.1. Define a set, E, recursively as follows:

1. 0 ∈ E,

2. if n ∈ E, then n + 2 ∈ E,

3. if n ∈ E, then −n ∈ E.

Using this definition, we can see that since 0 ∈ E by 1., it follows from 2. that 0 + 2 = 2 ∈ E, and
so 2 + 2 = 4 ∈ E, 4 + 2 = 6 ∈ E, . . . , and in fact any nonegative even number is in E. Also, by 3.,
−2, −4, −6, · · · ∈ E.

Is anything else in E? The definition doesn’t say so explicitly, but an implicit condition on a
recursive definition is that the only way things get into E is as a consequence of 1., 2., and 3. So
clearly E is exactly the set of even integers.

Example 1.2. Define a set, S, of strings of a’s and b’s recursively as follows:

1. λ ∈ S, where λ is the empty string,

2. if x ∈ S, then axb ∈ S,

3. if x ∈ S, then bxa ∈ S,

4.	 if x, y ∈ S, then xy ∈ S.

Copyright © 2002, Prof. Albert R. Meyer.

2 Course Notes 6: Recursive Definitions and Structural Induction

Here we’re writing xy to indicate the concatenation of the strings x and y, namely, xy is the string
that starts with the sequence of a’s and b’s in x followed by the a’s and b’s in y .

Using this definition, we can see that since λ ∈ S by 1., it follows from 2. that aλb = ab ∈ S,
so aabb ∈ S by 2. and baba ∈ S by 3. Likewise, bλa = ba ∈ S by 3., so abab ∈ S by 2. and
bbaa ∈ S by 3. Also, since ab ∈ S and ba ∈ S, we have abba ∈ S as well as as baab ∈ S by 4.

Notice that every string in S has an equal number of a’s and b’s. This is easy to prove by induction
on how a string gets to be in S.

Definition 1.3.

L ::= {x ∈ {a, b} ∗ | #a’s in x = #b’s in x} .

Lemma 1.4.

S ⊆ L.

Proof. Let P (n) be the predicate that if any string, s, is in S as a consequence of n applications of
rules 2., 3., and 4., then s ∈ L. We will prove that P (n) holds for all n ∈ N by strong induction.

Base case (n = 0). The only way to get an s ∈ S without using any of the rules 2., 3., and 4., is by
rule 1., so s = λ and s indeed has an equal number of a’s and b’s, namely zero of each.

Inductive step (n ≥ 0). Assume P (0), . . . , P (n) to prove P (n + 1).

So suppose s ∈ S as a consequence of n + 1 applications of rules 2., 3., and 4.

Case 1: The n + 1st rule was 2. That is s = axb for some x that is in S as a consequence of n
applications of 2., 3., and 4. By induction hypothesis, x has an equal number of a’s and b’s, say k
of each. Then, s also has an equal number of a’s and b’s, namely k + 1 of each, so s ∈ L.

Case 2: The n + 1st rule was 2. Symmetric to Case 1.

Case 3: The n + 1st rule was 4. So s = xy where x and y are each in S as a consequence of at most
n applications of 2., 3., and 4. By induction hypothesis, x has the same number, say kx, of a’s and
b’s, and y has the same number, say ky , of a’s and b’s. So xy has has an equal number of a’s and
b’s, namely kx + ky of each, and again s ∈ L as required.

It’s also not hard to show that every string with an equal number of a’s and b’s is in S :

Problem 1. Prove that L = S.

Example 1.5. The set, F , of Fully Bracketed Arithmetic Expressions in x is a set of strings over the
alphabet {], [, +, -, *, x} defined recursively as follows:

1. The symbols 0,1,x are in F .

2. If e and e� are in F , then the string [e+e �] is in F ,

3. if e and e� are in F then the string [e*e �] is in F ,

Course Notes 6: Recursive Definitions and Structural Induction 3

4. if e is in F then the string [-e] is in F .

Several basic examples of recursively defined data types are based on rooted trees. These are possi­
bly infinite directed trees, T = (VT , ET), with a necessarily unique “root” vertex root(T), such that
every vertex is reachable by a directed path from the root. Finite-Path Trees from Week 5 Notes,
for example, are the class of rooted trees which do not have any infinite directed path from the
root.

Another important class of trees are the ordered binary trees. These are possibly infinite rooted trees
with labelled edges, such that at most two edges leave each vertex. If two edges leave a vertex,
one is labelled left and the other is labelled right. If one edge leaves a vertex, it is labelled
either left or right.
Example 1.6. We will define a special class of ordered binary trees called the recursive ordered binary
trees, RecBinT:

1.	 If G is a graph with one vertex and no edges, then G is a RecBinT. That is, ({v} , ∅) ∈ RecBinT
and root(({v} , ∅)) = v.

2.	 If T = (V,E) is in RecBinT, and n is a “new” node not in V , then the graph, makeleft(T),
made by adding an edge labelled left from n to root(T) is a RecBinT. That is,

makeleft(T) ::= (V ∪ {n} , E ∪ {(n, root(T), left)}) ∈ RecBinT,

where (v, w, �) is the directed edge from vertex v to vertex w with label �.

3. Same as above, with “right” in place of “left.”

4.	 If T1 = (V1, E1) and T2 = (V2, E2) are in RecBinT, V1 and V2 are disjoint, and n is a “new”
node not in V1 ∪ V2, then the graph, makeboth(T1, T2), made by adding an edge labelled
left from n to root(T1) and an edge labelled right from n to root(T2) is a RecBinT. That
is,

makeboth(T1, T2) ::= (V1 ∪ V2 ∪ {n} , E1 ∪ E2 ∪ {(n, root(T1), left), (n, root(T2), right)}) ∈ RecBinT.

These cases are illustrated in Figure 1, with edges labelled “left” shown going down to the left,
and edges labelled “right” shown going down to the right.

A special case of RecBinT’s are the full ordered binary trees, FullBinT. These are RecBinT’s in
which every node is either a leaf (i.e., has out-degree zero) or has both a left and right subtree (see
Figure 2). In other words rules 2. and 3. in the definition of RecBinT are not used in defining the
subset FullBinT ⊂ RecBinT.

Note that RecBinT is precisely the set of finite ordered binary trees. Properly speaking, we should
prove this. Namely, we should prove that every RecBinT is finite, and prove that every finite
ordered binary tree is an RecBinT. We’ll hold off on this, but will do a more interesting proof of
this kind for infinite trees in Theorem 3.2 below.

We can generalize RecBinT’s to the class of Countable Ordered Trees, CT, in which each vertex may
have any finite number, n ≥ 0, of edges consecutively labelled 1, 2, . . . , n leaving it, or may even
have an infinite set of edges consecutively labelled with all the positive integers.

� �

� �

s s s
s s

s s

� � � �

� � � �

� � � �

� � � �

� � � �
� � � �

� � � �
� � � �

� �
� �

4 Course Notes 6: Recursive Definitions and Structural Induction

n n
�
s s

��� ����

� t � � t �

(a) (b)

n s
��������

� t � � t’ �

(c)

Figure 1: Building a binary tree: (a) makeleft(T), (b) makeright(T), and (c) makeboth(T1, T2).

s
�

��������
��s� s

s� �e �s �e
e e� �e � �s

e� �e
Figure 2: A full binary tree.

� �

Course Notes 6: Recursive Definitions and Structural Induction 5

Example 1.7. We recursively define the set, RecCT, of Recursive Countable Trees as follows:

1. If G is a graph with one vertex and no edges, then G is a RecCT.

2. If T1 = (V1, E1), T2 = (V2, E2), . . . is a finite or infinite sequence of RecCT’s, such that Vi�∞and Vj�are disjoint for all i �= j, and n is a “new” node not in 1 Vi, then the graph,
maketree(T1, T2, . . .), made by adding an edge labelled i from n to root(Ti) for all i > 0
is a RecCT. That is,

∞

 ∞

1

Ei�∪ (n, root(Ti), i) | i ∈ Z+) ∈ RecCT.
maketree(T1, T2, . . .) ::= (Vi�∪ {n} ,
1

Example 1.8. The set, List, of pure lists is defined recursively by:

1. The 0-tuple, (), is in List.

2. If �1 and �2 are in List, then the pair (�1, �2) is in List.

In Lisp-like programming languages, the pairing operation is called cons and the 0-tuple is called
nil.

2 Structural Induction on Recursive Data Type Definitions

Structural induction is used to prove a property P of all the elements of some recursively-defined
data type. The proof consists of two steps:

• Prove P for the “base cases” of the definition.

• Prove P for the result of any combination rule, assuming that it is true for all the parts.

For example, structural induction on Fully Bracketed Arithmetic Expressions takes the form:

Proof. To prove ∀e ∈ F P (e), show:

Base (e = 0). P (0) holds.

Base (e = 1). P (1) holds.

Base (e = x). P (x) holds.

Inductive step ([e +e�]). Assume P (e) and P (e�) to prove P ([e+e �]).

Inductive step ([e*e �]). Assume P (e) and P (e�) to prove P ([e*e �]).

Inductive step ([-e]). Assume P (e) to prove P ([-e]).

Here’s an actual example:

Theorem 2.1. Every Fully Bracketed Arithmetic Expression has the same number of left and right brackets.

6 Course Notes 6: Recursive Definitions and Structural Induction

Proof. This is just like the proof of Lemma 1.4 above, except we proved Lemma 1.4 by ordinary
strong induction explicitly on the number of rules used to contruct on element. Here we use
structural induction, which lets us carry out the proof without having to count rule applications.

Define P (e)::= expression e has the same number of left brackets,], and right brackets, [.

Base Cases (e = 0, e = 1, or e = x). The expression e has no brackets.

Inductive step ([e +e�]). Assume P (e) and P (e�) to prove P ([e+e �]).

But P (e) implies e has ke�left brackets and ke�right brackets for some ke�∈ N; likewise e� has ke� left
brackets and ke� right brackets. So [e+e �] has ke�+ ke� + 1 right brackets and the same number of
left brackets.

Inductive step ([e *e �]). Similar.

Inductive step ([-e]). Similar.

3 Induction on Trees

Here’s a proof using structural induction on binary trees:

Theorem 3.1. The number of edges in any RecBinT is exactly one fewer than the number of vertices.

Proof. Define

P (T) ::= T = (V,E) ∈ RecBinT and |V | − 1 = |E| .

Base Case (T is the single-node tree). There are 0 edges and 1 node, so P (T) holds.

Inductive step (T = makeleft(S)). Assume P (S) to prove P (T). That is, assuming

|VS | − 1 = |ES | , (1)

show that

|VT�| − 1 = |ET�| (2)

But

ET�=ES�∪ {(n, rootS, left)} so,
|ET�| = |ES | + 1, (3)

and

|ET�| = |VS | , (by (3) and (1)), so,

|ET�| + 1 = |VS | + 1. (4)

But

VT�=VS�∪ {n} , so
|VT�| = |VS | + 1 (5)

Course Notes 6: Recursive Definitions and Structural Induction 7

Combining (5) and (4) immediately implies (2).

Inductive step (T = makeright(S)). Same as previous case with “right” replacing “left.”

Inductive step (T = makeboth(T1, T2)). Assume P (T1) and P (T2) to prove P (T). That is, assum­
ing

|ETi | = |VTi | − 1, (6)

for i = 1, 2, prove

|ET�| = |VT | − 1, (7)

The similar proof for this case is left to the reader.

Structural induction is a correct and useful proof method on recursive data types even when they
are infinite. For example, using structural induction on the definition of RecCT’s, we can easily
prove that every RecCT is a Finite-path Countable Ordered Tree.

Theorem 3.2. Every RecCT is a Finite-Path CT.

Proof. Define

P (T) ::= T is a Finite-path CT.

We prove that P (T) holds for all T ∈ RecCT by Structural Induction on the definition of RecCT.

Base case (T has one vertex) T is a CT by definition of CT. There is only an “empty” of length zero
in T . So T is also Finite-path.

Inductive step (T = maketree(T1, T2, . . .)). By structural induction hypothesis, we may assume
that P (Ti) holds for all Ti.

By definition of T , the edges from the root of T are labelled with consecutive integers. Any other
vertex of T is a vertex in Vi�which is labelled with consecutive integers because Ti�∈ CT by hy­
pothesis. Hence T ∈ CT.

Also by definition of T , the second node on any path from the root of T must be the root some Ti.
The rest of the path is a directed path from the root of Ti, and so is finite because Ti�is Finite-path
by induction hypothesis. So the whole path from the root of T is also finite.

This proof by Structural Induction may seem obvious, but it is actually different in character from
all the other Structural Induction proofs. Namely, all the other proofs could be reformulated as
ordinary induction on the number of rule applications used in constructing an element of the
recursive data type. But because a Recursive Countable Tree can be built by combining an infi­
nite sequence of subtrees, which in total already take an infinite number of rule applications, the
number of rule applications to construct a single RecCT may not be finite. So ordinary induction
on the number of rule applications to construct a recursively defined object won’t work. As a
matter of fact, Mathematical Logicians have proved that this kind structural induction on infinite
data objects is actually strictly more powerful than ordinary induction. But nevertheless, Structural

8 Course Notes 6: Recursive Definitions and Structural Induction

Induction is a completely correct proof method, even for data types like RecCT that build up ele­
ments in an infinite number of steps.

Problem 2. Prove the converse of Theorem 3.2:

Theorem 3.3. Every Finite-path CT is a RCT .

Hint: Suppose not, and consider a minimal Finite-path CT (under the well-founded “strict-subtree”
partial order on Finite-path trees defined in Week 5 Notes) that is not in RecCT.

4 Recursively-defined Functions on Recursively-defined Data Types

4.1 Some Recursively Defined Functions

Recursive definitions provide a natural way to define functions whose domains are recursively-
defined data types.

Example 4.1. (Binary Trees)

Define the function numnodes(T) (a recursive definition of |VT�| for a RecBinT as follows:

1. numnodes(single node) ::= 1,

2. numnodes(makeleft(S)) ::= numnodes(S) + 1,

3. numnodes(makeright(S)) ::= numnodes(S) + 1,

4. numnodes(makeboth(T1, T2)) ::= numnodes(T1) + numnodes(T2) + 1.

Similarly, define numedges(T):

1. numedges(single node) ::= 0,

2. numedges(makeleft(S)) ::= numedges(S) + 1,

3. numedges(makeright(S)) ::= numedges(S) + 1,

4. numedges(makeboth(T1, T2)) ::= numedges(T1) + numedges(T2) + 2.

Example 4.2. (Arithmetic Expressions) Given a value, n, for the variable, x, we can easily calculate
the numerical value of any expression, e, in the set, F , of Fully Bracketed Arithmetic Expressions
in x. The function, eval(e, n), giving the value of expression e when x has value n has a simple
recursive definition based on the definition of the recursive data type F . Namely, define

1. eval(0, n) ::= 0,

2. eval(1, n) ::= 1,

Course Notes 6: Recursive Definitions and Structural Induction 9

3. eval(x, n) ::= n,

4. eval([e+e �], n) ::= eval(e, n) + eval(e� , n),

5. eval([e*e �], n) ::= eval(e, n) · eval(e� , n),

6. eval([-e], n) = −eval(e, n).

Another useful operation on arithmetic expressions is substituting one into another. Let subst(e, f)
be the result of substituting expression f for all occurrences of x in e. The function subst also has a
simple definition based on the definition of the recursive data type F . Namely, define subst(e, f)
recursively in e as follows:

1. subst(0, f) ::= 0,

2. subst(1, f) ::= 1,

3. subst(x, f) ::= f ,

4. subst([e+e �], f) ::= [subst(e, f)+subst(e�

5. subst([e*e �], f) ::= [subst(e, f)*subst(e �

6. subst([-e], f) = [-subst(e, f)].

4.2 Recursive Function Definitions

, f)],

, f)],

In general, we can define a function, f , on a recursively defined data type by defining f on each
of the elements in the base cases of the definition. Then define f (d) in terms of f (d1), f (d2), . . .
where d is an element built from elements d1, d2, . . . by a combination rule. One warning though:
f is only guaranteed to be well-defined if each element, d, can be constructed in only one way: only
by a unique combination rule applied to unique elements d1, d2, So this kind of recursive def­
inition will work fine for Fully Bracketed Arithmetic Expressions, binary trees, lists, and recursive
trees, but might not yield a well-defined function if the definition of f was based on the recursive
definition we gave for the set, S, of strings with an equal number of a’s and b’s. The reason is that
some strings in S can be constructed in more than one way.

Problem 3. (a) What is the smallest string in S which can be constructed in two different ways
using Definition 1.4 of S above?

(b) Find a recursive definition of S similar to the one above, but under which every string in S is
constructed in exactly one way.

10 Course Notes 6: Recursive Definitions and Structural Induction

4.3 Proving Properties of Recursive Functions

When we have a recursive definition of a function on a recursive data type, we can use structural
induction to prove properties of the function. We already did this in proving Theorem 3.1 relating
the number of edges and nodes in a binary tree. A more interesting example using structural
induction on the definition of Fully Bracketed Arithmetic Expressions to prove a fundamental
relationship between numerical and symbolic calculation.

Namely, suppose we have an arithmetic expression e with variable x and we substitute another
expression, f , for all the x in e to obtain a new expression, e� ::= subst(e, f). Now suppose we want
to evaluate e� when x has the value n. One way to do it would simply be to evaluate e� recursively,
ignoring the way that e� was obtained from e and f . But another, usually more efficient, approach
would be to find the value of f when x has the value n, and then evaluate e when x is given
the value obtained from f . In Lisp programming terminology, the first approach corresponds
to evaluation using a “substitution model,” and the second approach corresponds to evaluation
using an “environment model.” We will prove that both models yield the same answer. More
precisely, what we want to prove is

Theorem 4.3. For all expressions e, f ∈ F and n ∈ Z,

eval(subst(e, f), n) = eval(e, eval(f, n)). (8)

Proof. The proof is by structural induction on e.

Base cases (e = 0, e = 1). Then the lefthand side of equation (8) equals e by the base cases of the
definition of subst, and the righthand side equals e by the base cases of the definition of eval.

Base case (e = x). Then the lefthand side of equation (8) equals eval(f, n) by the base case for
x of the definition of subst, and the righthand side equals eval(f, n) by the base case for x of the
definition of eval.

Inductive step ([e +e�]). Assume that for all f ∈ F and n ∈ N,

eval(subst(e, f), n) = eval(e, eval(f, n)) (9)
eval(subst(e � , f), n) = eval(e � , eval(f, n)), (10)

to prove that for all f ∈ F and n ∈ N,

eval(subst([e+e �], f), n) = eval([e+e �], eval(f, n)) (11)

But the lefthand side of (11) equals

eval([subst(e, f)+subst(e � , f)], n)

by definition of subst for a sum expression, which equals

eval(subst(e, f), n) + eval(subst(e � , f), n)

by definition of eval for a sum expression. By induction hypothesis, this equals

eval(e, eval(f, n)) + eval(e � , eval(f, n)),

which equals the righthand side of (11) by definition of eval for a sum expression. This proves (11)
in this case.

Inductive step ([e *e �]). Similar.

Inductive step ([-e]). Similar.

Course Notes 6: Recursive Definitions and Structural Induction 11

4.4 Recursive Functions on Natural Numbers

The recursive definitions of functions on recursively defined data types also applies to recursively
defined functions on the natural numbers. One can think of the natural numbers, N, as recursively
defined by

1. 0 ∈ N,

2. if n ∈ N, then n + 1 ∈ N.

Now ordinary induction is exactly structural induction based on this recursive definition. Treating
the natural numbers as a recursively defined data type also justifies the use of familiar recursive
definitions of functions on the natural numbers.

The Factorial function: A very useful function for counting and probability.

• 0! ::= 1

• (n + 1)! ::= (n + 1)n! for n ≥ 0.

The Fibonacci numbers: These are interesting numbers that arise, e.g., in biology, where they
model some types of growth processes (plants, cells, rabbit populations, etc.). The Fibonacci
numbers are written as Fi, i = 0, 1, 2, They are defined recursively by:

F0 ::= 0,

F1 ::= 1,

Fi ::= Fi−1 + Fi−2 for i ≥ 2.

Note there are two base cases, since each combination relies on previous two values.

What is F4? Well, F2 = F1 + F0 = 1, F3 = F2 + F1 = 2, so F4 = 3. The sequence starts out
0, 1, 1, 2, 3, 5, 8, 13, 21,

Σ notation (the traditional style): We’ve been using this notation informally already.

•	 Σi
0
=1f (i) ::= 0,

Σn+1• i=1 f (i) ::= Σi
n
=1f (i) + f (n + 1), for n ≥ 0.

Simultaneous recursive definitions: You can define several things at the same time, in terms of
each other. For example, we may define two functions f and g from N to N, recursively, by:

• f (0) ::= 1,

• g(0) ::= 1,

• f (n + 1) ::= f (n) + g(n), for n ≥ 0,

• g(n + 1) ::= f (n) × g(n), for n ≥ 0.

We can use the recursive definitions of functions in proving their properties. As an illustration,
we’ll prove a cute identity involving Fibonacci numbers. Fibonacci numbers provide lots of fun
for mathematicians because they satisfy many such identities.

n�

12 Course Notes 6: Recursive Definitions and Structural Induction

Proposition 4.4. ∀n ≥ 0(Σi
n
=0Fi

2 = FnFn+1).

Example: n = 4:

02 + 12 + 12 + 22 + 32 = 15 = 3 · 5.

Let’s try a proof by (standard, not strong) induction. The theorem statement suggests trying it
with P (n) defined as:

Fi
2 = FnFn+1.

i=0

Base case (n = 0). Σi
0
=0Fi

2 ::= (F0)2 = 0 = F0F1 because F0 ::= 0.

Inductive step (n ≥ 0). Now we stare at the gap between P (n) and P (n +1). P (n +1) is given by a
summation that’s obtained from that for P (n) by adding one term; this suggests that, once again,
we subtract. The difference is just the term Fn

2
+1. Now, we are assuming that the original P (n)

summation totals FnFn+1 and want to show that the new P (n + 1) summation totals Fn+1Fn+2.
So we would like the difference to be

Fn+1Fn+2 − FnFn+1.

So, the actual difference is Fn
2
+1 and the difference we want is Fn+1Fn+2 − FnFn+1. Are these the

same? We want to check that:

Fn
2
+1 = Fn+1Fn+2 − FnFn+1.

But this is true, because it is really the Fibonacci definition in disguise: to see this, divide by Fn+1.

5 Ill-formed Definitions

We must take care that functions defined recursively are well-defined. Below are some function
specifications that look like definitions but aren’t.

f (n) = 2 + f (n − 1). This “definition” has no base case. If some function, f , satisfied this equa­
tioin, so would a function obtained by adding a constant, k, to the value of f . So this “defi­
nition” does not uniquely define f .

f (n) = 0 if n is divisible by 2, f (n) = 1 if n is divisible by 3, and f (n) = 2 otherwise. This “definition”
is inconsistent: it requires f (6) = 0 and f (6) = 1, so it doesn’t define anything.

f (0) = 0, otherwise f (n) = f (n + 1) + 1. From this “definition,” it follows that f (1) > f (2) > f (3)
> . . . , so f (1) cannot equal any integer. No total function on the natural numbers can sat­
isfy this definition. However, it does uniquely determine a partial function on the natural
numbers, namely, the function that is 0 at 0 and undefined everywhere else.

f (0) = 0, otherwise f (n) = f (n + 1). Lots of total functions satisfy the equations in the “defini­
tion.” Namely, any function that is 0 at 0 and constant eveywhere else.

Course Notes 6: Recursive Definitions and Structural Induction 13

A mystery. Mathematicians have been wondering about this one for a while:

• f (1) = 1.

• If n is even, then f (n) = f (n/2).

• If n is odd, then f (n) = f (3n + 1).

This “definition” of f in some cases defines f (n) in terms of f applied to arguments larger
than n, and so cannot be justified by induction on N. It has been proven that if f is a function
that satisfies the above equations, then f (n) = 1 for all n up to at least a billion, and it’s a
good guess that the only f that works is the constant function equal to 1. But nobody knows
if there is more than one function satisfying these equations.

6 Induction in Computer Science

We’ve spent a lot of time studying induction. This is because induction comes up all the time in
analyzing computation. Why? Well, ordinary induction on natural numbers is a “one step at a
time” proof method. Computations also evolve “one step at a time.”

Structural induction on recursive definitions lets us go beyond simple natural number counting.
We can explain how to define recursive functions on recursive data types. And we can prove
properties of recursively defined data and functions by structural induction on the definition of
the data type. We even noted that Structural Induction is technically more powerful than ordinary
induction. It is a technique which every Computer Scientist should firmly grasp.

	Recursive Definitions
	Structural Induction on Recursive Data Type Definitions
	Induction on Trees
	Recursively-defined Functions on Recursively-defined Data Types
	Some Recursively Defined Functions
	Recursive Function Definitions
	Proving Properties of Recursive Functions
	Recursive Functions on Natural Numbers

	Ill-formed Definitions
	Induction in Computer Science

