
-

○ Modules in computer systems (especially software modules) interact by calling others'
procedures.

○ Calling procedures provides modularity, but it's soft modularity: the modularity is specified
by a contract. Nothing is there to enforces it.

 The caller must store arguments on stack.

 The caller must also store return address on the stack.

 The caller jumps to the callee.

 The callee loads the arguments from stack.

 The callee computes.

 The callee loads the return address from the stack.

 The caller jumps to the caller specified return address.

 The caller resumes control.

○ Consider a normal procedure call. There's a lot of stack juggling underneath:

 The callee corrupts the caller's stack area?

 The callee returns somewhere else besides what the caller specified?

 The callee goes into an infinite loop? (This disaster is called fate sharing.)

 The callee modifies some global variables it's not supposed to modify?

○ What if:

○ This is not good. We need enforced modularity. Modularity that has an external
mechanism enforcing it.

Procedure calls.

○ Limit interactions between modules to sending and receiving messages.

○ Service = a module that is used.

○ Client = a module that uses a service.

 Client builds a message containing all information the service needs to do its job.

 Client sends the message to the service.

 Service extracts argument from the message.

 Service computes.

 Service sends the result back to client.

 Client extracts result from message.

○ Client & server interaction

○ Client-server interaction can be represented by message timing diagram.

 Client and server can really only communicate via message.

 If they are geographically separated, they are less likely to be subjected to the same
disasters such as fire or power outages.

 However, it is costly to have one computer for each module.

○ In the ideal case, client and service are supposed to be run on separate machines
connected by a network.

 Errors can propagate only through messages.

 No global, shared data structures.

 Clients and servers do not have to rely on one another for correct operations.

 Clients can put time limit on how long it waits for responses from services.

 Sweeping generalization: everything through messages.

○ Characteristics

□ Limit ways that modules can interact. Fewer ways to interact, fewer ways
things can go wrong.

 Enforcing modularity

□ If the service fails, the client just loses the function the service provides. It
doesn't fail altogether. So it's easy to recover from outages.

If modules check messages for validity, they can control how errors propagate

 Fault tolerance

○ Advantages

- Client/service organization

Modularity with Clients and Services
Monday, December 03, 2007

4:19 PM

 6.033 1

□ If modules check messages for validity, they can control how errors propagate
somewhat.

□ Modules can examine incoming messages for potential attacks.

 Security

 WWW

 DNS

○ Examples

○ Multiple clients and services can work at the same time.

○ A module can be both client and server at the same time.

 Good for fault tolerance.

 Complicates the system somewhat because we have to be able to name each
module.

○ A service may be implemented by multiple identical modules.

 A service that functions as a trusted third party for a number of untrusting clients.

□ File system.

□ Email services.

□ Certificate authorities.

 Examples:

□ Centralized control over shared resources.

□ An easy way to achieve protection.

□ Enforce modularity between clients. A trusted intermediary makes sure that
faults at one client have limited effects on other clients.

□ Client can be simple.

 Advantages

□ The trusted intermediary itself is expensive to design, implement, and
maintain.

□ Can become bottleneck.

□ If it fails, all the function is lost.

□ Users have to trust it. What if it's malicious or is censored?

 Disadvantages

○ Trusted intermediaries

 Every module participating is equal in function, but not capacity. A module is called a
node.

 Every node is both client and service.

 A node is connected to many other nodes. This makes the system fault tolerance.

 A node request services it wants from other nodes in the network, while providing
services that it is capable of to them at the same time.

□ Need distributed algorithm to discover services.

□ For every request, some services are going to be missed.

□ Most design has characteristics that popular services are easier to find.

 Information is not centralized.

□ Music sharing network programmed by a 18 year-old boy.

□ Songs are stored on nodes, but a trusted intermediary store their locations.

□ RIAA could shoot Napster down in one shot because of this trusted
intermediary.

□ New systems avoid trusted intermediaries to avoid one point failure.

 Napster

○ Peer-to-peer

- Organizations made possible by client-service model

○ A stylized communication between client and service where every message is followed by
a response.

○ With RPC, one can mask client-service communication so that it looks like normal
procedure calls.

 Hides implementation details.

 Make a message from its argument. (Marshalling)
Send message, and wait for response.

○ Stub

- Remote Procedure Call (RPC)

 6.033 2

 Send message, and wait for response.

 Extract results form the response. (Unmarshalling)

 Caller and callee of RPCs don't share fate.

 Client must be more complicated because it has to deal with incorrect messages or
the lack of responses from service.

○ RPC has different semantics from local procedure call.

 At-least-once RPC: The client keeps trying until it gets response. It's important that
the computation performed is idempotent: the result of performing it more than
once is the same at performing it only once.

 At-most-once RPC: The client just gives up and declare that the RPC fails. This mode
is preferable for RPC that have side effects; for example, electronic payment.

 Exactly-once RPC: The client communicates with the service after it comes back up
to see what went wrong and tries to ensure that the computation is performed only
once. This is very hard to achieve in real systems.

○ Three modes of responding to lack of responses from service.

○ Communication between client and service require them to be present at the same time.

○ With trusted intermediary, we can implement buffered communication, in which the
intermediary holds the message until the receiver is available.

○ Email and newsgroup are prime example of this mode of communication.

□ Push = send the message to the intermediary.

□ Pull = receive message from the intermediary.

□ Push and pull operations often have different protocols. For example, Simple
Mail Transfer Protocol (SMTP) is a push protocol, while IMAP and POP are pull
protocols.

 Push/pull

□ The publisher notifies the intermediary that it has a message on a particular
topic.

□ Any user interested in the topic may subscribe to that topic, so that when he
pulls messages from the intermediary, new messages on the topic are
delivered to him.

□ Examples: mailing list, internet chat room.

 Publish/subscribe

○ Styles of communications

□ The intermediary can send the message to an appropriate user that might not
be the one indicated by the name the sender utters.

 Indirection

 Send the same message to multiple receivers.

○ Things you can achieve through intermediary.

- Communicating through intermediary

○ Allow computers to access files across LAN or WAN.

○ Possibly a peer-to-peer architecture. Nodes are computers connected to the network. Each
has an independent file system. A node can be both a client (accessing files on other
nodes) or a server (storing files locally and allowing other nodes to access the files).

○ Goal: Allow nodes to access file on other nodes using the same interface as the file
system interface on the node itself.

 Mounting protocol

 NFS protocol

○ Two separate protocols:

 Establish initial logical connection between server and client.

 Managed by a process outside a kernel.

□ NFS_Mount(local_directory, remote_directory, hostname)

 Client Interface

□ local_directory is replaced by remote_directory. (If you ls local_directory, you'll
see files in remote_directory.)

 Semantics

Server maintains:

○ Mount protocol

- Example: Network File System (NFS)

 6.033 3

□ An export list of directories it allows clients to mount.

□ A list of names of machines that are allowed to mount those directories.

 Server maintains:

 When server receives a mount request, it checks the request with the export list.
After clearing permission, it returns a file handle to the client. In Unix, the file handle
consists of the name of the file system being mounted, and the inode number of the
directory being mounted.

□ Manipulating links and directories.

□ Reading and writing files.

 Protocol for accessing files.

 Implemented as RPCs.
 No open() and close(). Because NFS wants to be stateless. NFS doesn't want to keep

any information about the state of the clients, so that it doesn't have to recover
those states when it fails. This makes NFS more robust.

 File operations are idempotent. So, client can deal with lack of response using more-
than-once RPC.

 However, each NFS request has a request number, so that the server can see which
request is duplicated or lost.

 Stateless server dictates that each write must be committed before returning to the
client. This makes caching harder.

 A single write RPC is atomic. However, a write() system call at the client can be
broken down into a number of RPCs. So, if two users concurrently write to the same
file, they data may get mingled.

 NFS does not provide locking because it is stateful. Users are encouraged to
coordinate writes to the same file themselves.

○ NFS Protocol

 Path names have components.

 Each component is resolved by separate NFS lookup RPC once a mount point is
crossed.

□ Say /nfs/theory may be mounted to a directory on theory.cpe.ku.ac.th.

□ But user might mount /nfs/theory/etc/practice to a directory on
practice.cpe.ku.ac.th

□ Thus, can't just hand etc/practice to theory.cpe.ku.ac.th to resolve.

 Have to do this because some implements allow cascading mounts.

□ nagato.cpe.ku.ac.th mounts /nfs/theory to /home/pramook on
theory.cpe.ku.ac.th.

□ /home/pramook/etc/practice is a directory on theory.cpe.ku.ac.th. The
directory has file a.txt.

□ Say, theory.cpe.ku.ac.th mounts /home/pong on practice.cpe.ku.ac.th to
/home/pramook/etc/practice. /home/pong has one file, b.txt.

□ When I list /nfs/theory/etc/practice on nagato.cpe.ku.ac.th, I'll see a.txt.
However, when I list /home/pramook/etc/practice on theory.cpe.ku.ac.th, I'll
see b.txt.

 Server can't act as intermediary between client and a server it is using service.

○ Path name resolution

 Record expires every 60 seconds.

 Record is updated if the information on the server doesn't match.

□ File attribute cache

 Client writes locally before flushing the blocks to servers.

□ File block cache

 Buffering and caching is done on the client side.

□ A file create on one computer might not be visible elsewhere for a while (1-2
minutes). The same is true for writes.

□ Changes are visible only after they are committed to the disks on the server,
and clients can see the change only after they update their cache.

 Consistency semantics is in jeopardy.

○ Performance tuning and its complication

○ All in all, people still use it because of performance and robustness.

○ Worst is better, after all.

 6.033 4

