
○ Think about system in a global way.

○ Abstract details.

- We're going to talk about "system perspective" in computer system design.

 Properties of a system that you cannot infer from properties of individual
components.

 "Surprises"

○ Emergent properties

 A local change can have wide-ranging effects.

○ Propagation effects

 Not all part of a system follows the same scaling rules.

○ Incommensurate scaling

 You cannot have all you want.
 Waterbed effect = solving one problem causes another problem elsewhere.

○ Trade-offs

- Common problems about systems.

○ System = a set of interconnected components that has a specified behavior observed at
the interface with its environment.

□ Purposes

□ Granularity

 Depends on your point of view.

○ What are system components?

○ Computer system or information system = system built to store, process, and/or
communicate information under automatic control. We are interested in digital system.

- System vocabs

 Large number of components.

 Large number of interconnections

 Irregularity.

 Lack of methodical description.

 A team of size N>1 to understand, construct, and maintain the system.

○ Signs

□ Generality = meeting many requirements with a single design.

 Directly: Well, more interacting requirements.

 Indirectly: Users of a very general system will use the system differently
so that they can suppress that part that they do not want. As such, they
cannot communicate with others well about the same system.

□ Generality contributes to complexity directly and indirectly.

□ Requirements also change.

□ As a system ages, it will accumulate requirements and become more complex.
The lifetime of a system is until its complexity is too much to understand.

 Cascading and interacting requirements.

□ You have resource. Needs to use resource efficiently. Performance always gets
in the way of everything.

 Maintaining high utilization

○ Sources of complexity

- Complexity

 Design systems as a collection of interacting subsystems or modules.

Can think about interactions between components of a module without thinking

 Advantages

○ Modularity

- Coping with Complexity

Complexity in Computer Systems
Monday, November 19, 2007

5:12 PM

 6.033 1

□ Can think about interactions between components of a module without thinking
about their interactions with things outside the module.

□ Can replace modules with better ones.

 Make sure that modules can treat others knowing only the interface.

 Software is particularly prone to abstraction violation because the boundary between
modules are soft. There's always dangling pointers and things like that when you
program with C or C++.

□ Be tolerant on inputs and strict on outputs.

□ Namely, accept inputs that is slightly out of the scope you intend, and make
your output more precise than it needs to be.

□ Robustness principle suppresses noise.

□ Very successful in digital system: see static discipline.

 Robustness principle

○ Abstraction

 Make a bigger module of a small group of modules. Make even bigger modules out
of the bigger modules. Repeat until you get the whole system.

 Hierarchy helps limit interaction. From O(n^2) to O(n), in particular.

○ Hierachy

 Take a set of mechanisms that is already complete, and use them to create a
different complete set of mechanisms.

 Layers does not provide new functionality, but it recasts the functionality so that it
becomes easier to use and compose. Namely, it helps with understanding.

○ Layers

 Modules should refer to one another by names, so that we can replace the
underlying modules easily.

 Binding = choose among various implementations of a module.

 Delayed binding = name a functionality, not implement it. Sometimes called
indirection.

 "Every problem in computer science can be solved by adding a layer of indirection."

○ Names

 The set of analog value that a device accepts as ONE (or ZERO) is a lot
larger than the value that the device will output as ONE (or ZERO).

□ Thanks to static discipline.

□ Noise do not propagate in digital systems.

□ So you can compose them until you cannot understand them any more.

 Computer systems are digital.

□ Software has no physical limit on compositions.

□ Abstraction should help control software complexity, but software abstractions
are always leaky.

□ Developers are always tempted to add more features.

 Computer systems are controlled by software.

○ Computer systems have no nearby bounds on composition.

 Moore's law!

 By the time a system is finished, the technology changes so much that the design
may become obsolete or no longer work. Incommensurate scaling is like to occur if
the designers are to incorporate the new change to the system. A new design is
needed altogether.

 There's no time to weed mistakes out of the old designs. No time to find tuning. No
time for thorough analysis.

 Brute-force solutions might be the right approach for a lot of problems.

 Usability and "human engineering" factors are always neglected.

□ Think Bittorrent, or the Computer Crime Bill.

 Logical and judicial processes are always behind.

○ Unprecedented rate of change in technology.

- Computer systems are different!

It's hard to figure out the right modularity, abstraction, hierarchy, and layers.

The previous tools are not enough!○

- Coping with complexity in computer systems

 6.033 2

 It's hard to figure out the right modularity, abstraction, hierarchy, and layers.

○

 Design the system so that you can change it easily.

 Take small steps so that you can discover mistakes easily and quickly.

 Don't rush. Plan every step well.

 Plan for feedback.

 Study failures and learn from it.

 Don't lose conceptual integrity after iterations.

○ Iteration

 So that designers can make compelling arguments about correctness.

 So that it's clear to everyone what's going on.

○ Keep it simple

 6.033 3

