
07/01/51

1

Threads (cont.)

Pramook Khungurn

Thread

• A running module

• And all information that allow you to:

– Stop it while it is running

– Save this information somewhere

– Resume the module later with the saved 

information

• The module has no idea that it was stopped 

and resumed.

Thread (cont.)

• Concretely, such information consists of:

– Instruction pointer (or program counter)

– Registers

• Those used to do arithmetic calculations

• Stack pointer (SP)

• Page map address register (PMAR)

– Other information:

• Information about opened files

• Information about CPU scheduling

• Information about I/O

Last Time

• Non-preemptive scheduling

– Threads agree to release the CPU periodically.

– Nothing forces them to do this though.

– Soft modularity

• Threads share fate.

• If one thread goes into an infinite loop, other threads 

cannot run.

• Need preemptive scheduling to enforce 

modularity.

Preemptive Scheduling

• Each thread is given a time quantum to run.

• Once it has used up the time quantum, the 

thread manager schedules another thread to 

run.

• Typically, a time quantum is 10-100 

milliseconds.

Preemptive Scheduling (cont.)

• Needs an external mechanism to inform the 
thread manager that the time quantum has 
expired.

• The thread manager can’t do this by itself. 
(The CPU is being controlled by the running 
thread.)

• The external mechanism is the clock interrupt.

– The thread manager can tell the clock circuit to 
fire an interrupt 100 millisecond from now.



07/01/51

2

Preemptive Scheduling (cont.)

• Note the difficulty:

– Preemptive scheduling relies on interrupts.

– Interrupts must be processed in kernel.

• Can’t let user programs handle hardware directly.

– What about preemptive scheduling in user programs?

• Let’s talk about preemptive scheduling in user 

programs later.

• Now, we’ll focus on preemptive scheduling of 
kernel threads.

Preemptive Scheduling of 

Kernel Threads

• All comes to handle clock interrupt.

• When an interrupt occurs, the CPU needs to 

do three things:

– Save the states of the current kernel thread 

somewhere.

– Change CPU mode to kernel.

– Jump to the interrupt handler (specified in the 

interrupt vector).

Example: Interrupt in x86

• Can be triggered by:

– Hardware --- “IRQ”

– Software --- “trap” --- via INT instruction

x86 when an interrupt is fired

1. decide the vector number (depends on the source of the interrupt)

2. fetch the interrupt descriptor from the IDT. 

3. check that CPL <= DPL in the descriptor (but only if INT instruction). 

4. save ESP and SS in a CPU-internal register (but only if target segment 
selector's PL < CPL). 

5. load SS and ESP from TSS (" ") 

6. push user SS (" ") 

7. push user ESP (" ") 

8. push user EFLAGS 

9. push user CS 

10. push user EIP 

11. clear some EFLAGS bits 

12. set CS and EIP from IDT descriptor's segment selector and offset 

x86 when an interrupt is fired (cont.)

1. decide the vector number (depends on the source of the interrupt)

2. fetch the interrupt descriptor from the IDT. 

3. check that CPL <= DPL in the descriptor (but only if INT instruction). 

4. save ESP and SS in a CPU-internal register (but only if target segment 
selector's PL < CPL). 

5. load SS and ESP from TSS (" ") 

6. push user SS (" ") 

7. push user ESP (" ") 

8. push user EFLAGS 

9. push user CS 

10. push user EIP 

11. clear some EFLAGS bits 

12. set CS and EIP from IDT descriptor's segment selector and offset 

Figure out where the handler is.Figure out where the handler is.

x86 when an interrupt is fired (cont.)

1. decide the vector number (depends on the source of the interrupt)

2. fetch the interrupt descriptor from the IDT. 

3. check that CPL <= DPL in the descriptor (but only if INT instruction). 

4. save ESP and SS in a CPU-internal register (but only if target segment 
selector's PL < CPL). 

5. load SS and ESP from TSS (" ") 

6. push user SS (" ") 

7. push user ESP (" ") 

8. push user EFLAGS 

9. push user CS 

10. push user EIP 

11. clear some EFLAGS bits 

12. set CS and EIP from IDT descriptor's segment selector and offset 

Save states on Save states on sstacktack

of the current kernel threadof the current kernel thread



07/01/51

3

x86 when an interrupt is fired (cont.)

1. decide the vector number (depends on the source of the interrupt)

2. fetch the interrupt descriptor from the IDT. 

3. check that CPL <= DPL in the descriptor (but only if INT instruction). 

4. save ESP and SS in a CPU-internal register (but only if target segment 
selector's PL < CPL). 

5. load SS and ESP from TSS (" ") 

6. push user SS (" ") 

7. push user ESP (" ") 

8. push user EFLAGS 

9. push user CS 

10. push user EIP 

11. clear some EFLAGS bits 

12. set CS and EIP from IDT descriptor's segment selector and offset 

One of this bit is the mode bit.One of this bit is the mode bit.

Clear it Clear it �������� kernel mode.kernel mode.

x86 when an interrupt is fired (cont.)

1. decide the vector number (depends on the source of the interrupt)

2. fetch the interrupt descriptor from the IDT. 

3. check that CPL <= DPL in the descriptor (but only if INT instruction). 

4. save ESP and SS in a CPU-internal register (but only if target segment 
selector's PL < CPL). 

5. load SS and ESP from TSS (" ") 

6. push user SS (" ") 

7. push user ESP (" ") 

8. push user EFLAGS 

9. push user CS 

10. push user EIP 

11. clear some EFLAGS bits 

12. set CS and EIP from IDT descriptor's segment selector and offset 

Jump to the interrupt handler.Jump to the interrupt handler.

Handling Clock Interrupt

• The clock interrupt handler invokes the 

kernel’s thread scheduler.

• The scheduler then

– Select the next thread to run.

– Dispatch the control to that thread.

A Toy Implementation

By Pramook Khungurn

Processor

• We have a similar 32-bit processor as that in 
Lecture 7.

– Each register is 32-bit. 

– 32-bit address space.

• Registers

– R0, R1, R2, R3

– SP (stack pointer)

– IP (instruction pointer)

– PMAR (page map address register)

Processor (cont.)

• PMAR is the similar to that in Lecture 7

– Least significant bit is the user/kernel mode bit.

• 0 -> kernel

• 1 -> user

– Next to least significant bit is interrupt enable bit.

• 0 -> processor will not check for interrupt

• 1 -> otherwise

–When PMAR is 0, there’s no address translation.



07/01/51

4

Processor (cont.)

• And interrupt can be fired two ways:

– Hardware

– Software --- through INT instruction

• When an interrupt is fired:

1. IP, R0, R1, R2, R3 is pushed on the stack, 

respectively.

2. PMAR’s last two bit is cleared.

3. The CPU inspects the interrupt number, and jumps 

to the address specified in the interrupt vector.

Processor (cont.)

• Note that when an interrupt is fired:

– Only the last two bits of PMAR is changed, so we 

don’t switch address space.

– SP does not change.

Address Space Organization

• Each address space is a byte array of 232 bytes.

• We organize the address space so that the first 
231 bytes of every address space belongs to the 
kernel. (Remember Problem 3 from the 
midterm?)

• This way, there’s no need to worry about 
changing PMAR if the IP points somewhere in the 
kernel portion of the address space.

– Changing PMAR does not effect the next instruction 
being executed at all.

Information about a thread to keep?

• Very similar to Lecture 8:

– Thread state: UNUSED, RUNNABLE, WAITING

– Pointer to its stack.

– Its stack pointer

– PMAR

• Other registers are kept in the stack.

Information about a thread (cont.)

struct threadentry {

int state;

int *stack;

int sp;

int pmar;

} threadtable[7];

Thread Scheduler

procedure RUNNEXT() {

SCHEDULER(); // picks a new thread

DISPATCH(); // switch to the thread

}



07/01/51

5

Thread Scheduler (cont.)

• There’s a kernel variable “me” that contains 

the ID of the current thread.

• SCHEDULER() picks a new value of “me.”

• Here, we use a simple round-robin scheduler.

• This is the same as that of Lecture 8.

Thread Scheduler (cont.)

procedure SCHEDULER() {

me = FIND_NEXT_RUNNABLE(me);

}

procedure FIND_NEXT_RUNNABLE(x) {

do {

x = (x + 1) % 7;

} while (threadtable[x].state != RUNNABLE);

return x;

}

Dispatcher

• Changes to another thread.

• What to do:

– Loads the thread’s PMAR.

– Loads the stack pointer.

– Pop R3, R2, R1, R0.

– Return to the address on the stack.

• Everything has to be executed in the above 

order, why?

Dispatcher (cont.)

procedure DISPATCH() {

PMAR = threadtable[me].pmar;

SP = threadtable[me].sp;

POP R3

POP R2

POP R1

POP R0

}

Clock Interrupt Handler

• Things to do:

– Save PMAR and SP.

– Call RUNNEXT.

procedure CLOCK_INTERRUPT() {

threadtable[me].pmar = PMAR | 3;

threadtable[me].sp = SP;

RUNNEXT();

}

Preemptive Scheduling 

of User Threads

Silberschatz

Section 4.2



07/01/51

6

One-to-one Model

• Don’t bother implement a thread manager in 

user address space. Just use the kernel thread.

• One user thread = one kernel thread.

One-to-one Model (cont.)

• Pros:

– Easiest to implement (since there’s nothing to 

write).

– Every operating system supports this model.

• Linux, Solaris 9, Windows 95, 98, 2000, and XP does not 

have built-in support for preemptive scheduling of user 

threads.

One-to-one Model (cont.)

• Cons:

– Can be slow because of high overhead:

• Thread creation. Very high if every kernel thread is a 

process.

• Context switching

One-to-many Model

• One kernel thread (usually a process) 

corresponds to a number of user threads.

• Implements a thread manager in the kernel 

thread.

One-to-many Model (cont.)

• How to do preemptive scheduling?

– Initially, the thread manager requests the OS to 
schedule a clock interrupt some time in the 
future.

– Once the clock interrupt occurs, the OS sends a 
message (or signal) to the thread manager.

– The thread manager has a message handler that 
gets evoked everything it receives a message.

– The message handler calls YIELD() to give control 
to other user thread.

One-to-many Model (cont.)

• Pros:

– Less overhead incurred by thread creation and 

thread switching.

• Cons:

– If a user thread issues a blocking system call, then 

the all the threads in the same kernel threads also 

blocks.



07/01/51

7

Many-to-many Model

• User threads are multiplexed among many 

kernel threads.

• Kernel threads that manage user threads 

together must share address space.

– Each of them is not a process.

• Need OS support.

– Old versions of Solaris.

– IRIX, HP-UX, Tru64 Unix

Many-to-many Model (cont.)

• Pros:

– Cheap overhead like one-to-many model.

– Better CPU utilization than one-to-many model.

• Cons:

– Complex!

– User threads share fate.

– Kernel threads also share fate.

Many-to-many Model (cont.)

• Note that modern operating systems don’t 

implement this feature.

• Why? (This is my theory. Take it with a grain of 

salt.)

– They delegate this functionality to thread libraries 

so as to reduce complexity of the kernel?

– Hardware is fast enough that context switching 

hardly matters?

Interprocess Communication

Silberschatz

Section 3.4, 3.Project, and 4.4.3

Interprocess Communication

• In our case, it is “interthread communication.”

• Why?

– Information sharing: for example, shared files

– Computational speedup: allow threads to 

cooperate

• Two approaches:

– Shared memory

–Message passing

Shared Memory

• Threads communicate by reading/writing 

to/from memory locations that they share.

• Threads in the same address space can do this 

directly.

• Threads in different address spaces must 

request the OS to modify their page tables so 

that they share at least a page.

– This is done by MAP(id, block, page) system call.



07/01/51

8

Shared Memory (cont.)

• Pros:

– Fast

• Threads communicate directly by LOAD and STORE instructions.

– Flexible

• User can implement any communication mechanism he wants.

• Cons:

– Not Fault Tolerant

• If threads share memory, they share fate.

– Burden on User

• User must implement communication mechanism by himself.

Message Passing

• Threads communicate by sending messages.

• Kernel provides a service message sending.

• Typically, messages are received and sent to 
mailbox or ports.

• Example system calls:

– int SEND(int mailbox_id, message_t message)

• Send message to a particular mailbox.

– int RECEIVE(int mailbox_id, message_t *buffer)

• Get a message from a mailbox.

Message Passing (cont.)

• Kernel should also provide the following 

system calls:

– int CREATE_MAILBOX()

• Returns the ID of the new mailbox.

– void DELETE_MAILBOX(int mailbox_id)

• Delete the mailbox with the given ID.

Message Passing (cont.)

• Sending and receiving messages may be blocking
or non-blocking.

– Blocking send: The sending thread waits until the 
message is received by the receiver.

– Nonblocking send: The call finishes as soon as the 
mailbox gets the message or report that it cannot 
send the message.

– Blocking receive: The receiver blocks until a message 
it available in the mailbox.

– Nonblocking receive: The receiver gets a message of 
no message.

Message Passing (cont.)

• Pros:
– Fault Tolerance

• No memory sharing.

• Cons
– Slow

• Everything is done through the kernel.

– Short messages only
• Mailboxes have limited capacity.

– Inflexible
• Fixed communication mechanism (but is actually very 

general).

Signals

• A limited form of interprocess communication 

in Unix operating systems.

• Used to inform a process (UNIX has processes, 

not threads) that an event occurs.

– An interrupt is fired.

– The process child has terminated.

– Some other process kills the process.



07/01/51

9

Signals (cont.)

• The signal itself is an integer constant.

SIGABRT - process aborted 

SIGALRM - signal raised by alarm

SIGBUS - bus error: "access to undefined portion of memory object" 

SIGCHLD - child process terminated, stopped (*or continued) 

SIGCONT - continue if stopped 

SIGFPE - floating point exception: "erroneous arithmetic operation" 

SIGHUP - hangup

SIGILL - illegal instruction 

SIGINT - interrupt 

SIGKILL - kill 

SIGPIPE - write to pipe with no one reading 

SIGQUIT - quit 

SIGSEGV - segmentation violation

SIGSTOP - stop executing temporarily 

SIGTERM - termination 

SIGTSTP - terminal stop signal 

etc.

Signals (cont.)

• Signals are handled much like interrupts.

• When a signal is sent to a process, the 

process’s execution is interrupted.

• A function called signal handler is then called. 

• Once the signal handler finishes execution, 

the process resumes execution.

Signals (cont.)

• The kernel supplies some default signal 
handlers.

• Each user process can also specifies its own 
signal handler.

–Which means it can ignore some signals.

• However, the kernel forbids a process to 
specify handlers for some signals:

– SIGKILL

– SIGSTOP

Signals (cont.)

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

void handel_SIGINT() {

printf(“Caught SIGINT.”);

}

int main(int argc, char *argv[])

{

struct sigaction handler;

handler.sa_handler = handle_SIGINT;

sigaction(SIGINT, &handler, NULL);

while(1);

return 0;

}

Signal (cont.)

• Think: How would you implement preemptive 
scheduling with signals?

Scheduling Algorithms

Silberschatz

Section 5.2 and 5.3



07/01/51

10

Scheduling

• When the kernel takes control of the CPU, it has 
to decide which thread to run next.

• This process is called scheduling. (short-term 
scheduling in Silberschatz.)

• We have seen that there are two main types of 
scheduling:

– Nonpreemptive: The scheduler gets to run only when 
a thread calls it.

– Preemptive: External mechanism invokes the 
scheduler from time to time.

Scheduling (cont.)

• Scheduling can affect:

– Performance of your system.

– Happiness of users.

Scheduling Criteria

• How to measure “goodness” of your 
scheduling algorithm?

– CPU Utilization: How much time is the CPU busy?

– Throughput: Number of processes completed per 
time unit.

– Turnaround time: How long it takes to execute a 
process.

–Waiting time: How long a process waits to be run.

– Response time: Time from submission of a request 
until its completion.

Scheduling Criteria (cont.)

• Typically, we want to:

–Maximize CPU Utilization

–Maximize throughput

–Minimize turnaround time

–Minimize waiting time

–Minimize response time

• In interactive systems, it is desirable to 
minimize the variance of response time.
– User prefers predictable interactions.

Scheduling Algorithm

• Can be abstracted as follows:

– Thread that are in “runnable” state is placed 

inside a list of runnable threads

– The scheduling algorithm picks one thread out of 

the list and dispatch the CPU to it.

Scheduling Algorithms (cont.)

• Some common algorithms:

– First-Come First-Served

– Shortest-Job-First

– Priority Scheduling

– Round-Robin Scheduling

–Multilevel Queue Scheduling

–Multilevel Feedback-Queue Scheduling



07/01/51

11

First-Come First-Served (FCFS)

• The list of runnable process is a queue.

• A process that enters the queue before gets to 

run before.

• There is no preemption. Thread gets to run 

until it releases the CPU.

FCFS (cont.)

• This algorithm is the simplest of it all, but 
there are a lot of drawbacks:

– Threads share fate.

– Average turnaround time is usually high.

• Threads that takes a lot of time to run adds to the 
turnaround time of other threads.

– Convoy effect: A compute-intensive (means using 
a lot of CPU and little I/O) thread can slow down 
other I/O intensive threads.

– Cannot be used in time-sharing system.

Shortest-Job-First (SJF)

• Pick the thread that the scheduler thinks will 

release the CPU the soonest as the next 

thread to run.

• Can be either preemptive or nonpreemptive:

– Nonpreemptive: Allow the current thread to 

release CPU before selecting the next thread.

– Preemptive: Once a thread with a smaller time to 

release CPU enters the queue, dispatch to that 

thread immediately.

SJF (cont.)

• Pros:

– Gives optimal average turnaround time.

• Cons:

– Hard to estimate the time until threads release 

CPU. (Can use some approximation though.)

– Threads with high time-to-release-CPU may not 

get to run at all. (This is the problem of 
starvation.)

Priority Scheduling

• Each thread is associated with a numerical 

priority.

• There’s a separate queue for each value of 

priorities.

• The scheduler selects a thread from the queue 

with highest priority. Usually this selection 
uses FCFS algorithm.

Priority Scheduling (cont.)

• Pros:

– Flexible. Can be tuned to a particular application.

• Cons

– Starvation: Some low priority threads might not 
get to run at all if there’s a constant influx of high 
priority threads.

• We can solve the starvation problem by 
increasing a thread’s priority as it stays in the 
queue longer. This technique is called aging.



07/01/51

12

Round Robin Scheduling (RR)

• Preemptive scheduling where each thread is 
given a time quantum.

• The list of runnable threads is a queue.

• The scheduler picks the thread at the front of 
the queue to run. Two things can happen:

– The thread terminates or waits for something, in 
which the scheduler just picks a new thread.

– The thread exhausts its time quantum, it is put 
back at the end of the queue.

RR (cont.)

• Pros:

– Fault Tolerance

• A thread cannot hog CPU forever.

– Fair

• No starvation. Every thread gets some share of CPU.

• Cons:

– Average waiting time is often long.

– Hard to determine the right time quantum to use.

Multilevel Queue Scheduling

• Have more than one queues of runnable

threads. 

• Each queue has:

– Its own scheduling algorithm.

– Its associated priority.

• Each thread is assigned permanently to one 

queue.

Multilevel Queue Scheduling (cont.)

• Two possibility of scheduling threads in 

different queues:

–When a new thread is added to the queue with 

higher priority, the current running thread might 

be preempted if it belongs to the queue with 

lower priority.

– Each queue has its own time quantum.

Multilevel Feedback-Queue Scheduling

• Have multiple queues like Multilevel Queue 

Scheduling.

• However, threads can be moved among 

queues.

– If a thread uses too much CPU time, it is moved to 

lower priority queues.

– If a thread stays in a low priority queue for too 

long time, it might be moved to a higher priority 
queue. (aging)

Multilevel Feedback-Queue Scheduling 

(cont.)

• Pros:

– Very general

• Cons:

– Very complex

– Hard to select values for all the parameters

• Algorithm for each queue

• When to demote threads

• When to promote threads



07/01/51

13

Multiprocessor Scheduling

Silberschatz

Section 5.4

Multiple CPUs

• Load sharing and parallel processing becomes 

possible.

Approaches

• Asymmetric multiprocessing

• Symmetric multiprocessing

Asymmetric Multiprocessing

• A CPU runs the kernel. Other CPU runs user 

threads.

• Client-Server architecture.

• Simple: Only one processor modifies the 

kernel’s data structure.

• But if the system has heavy load, then the 

kernel is the bottleneck.

Symmetric Multiprocessing

• All processors run both the kernel and user 
threads.

• Each processor schedules threads to run by itself.

• No bottleneck. Greater degree of parallelism.

• But the kernel must be programmed carefully.

– Many processors may modify the kernel’s data 
structure at the same time.

– Need to ensure that the data contained therein are 
consistent.

• Most operating systems support this approach.

Issues

• Processor Affinity

• Load Balancing

• Symmetric Multithreading



07/01/51

14

Processor Affinity

• A processor has cache.

• When a thread runs on a processor, the cache of 
that processor is filled with data in the thread’s 
address space.

• If you move a thread from one processor to 
another, the cache of the receiving processor 
needs to be cleared and repopulated with the 
data the thread accesses.

• This incurs a lot of overhead.

• So, the kernel should avoid moving a thread from 
one processor to another.

Load Balancing

• Load balancing is the act of trying to keep 

loads evenly distributed among processors.

• Necessary when each processor has its own 

scheduling queue.

• Load balancing is done by moving threads 

from one processor’s queue to another 

processor’s queue.

Load Balancing (cont.)

• Two kinds of load balancing:

– Push migration: The kernel periodically checks the 

load on each processor, and redistributes the 

threads to even the loads.

– Pull migration: An idle processor “steal” threads 

from a buy processor’s queue.

• Load balancing conflicts with processor 

affinity. But every operating system needs 
both. Trade-off ensues.

Symmetric Multithreading

• Some CPU such as Intel with hyperthreading

provides more than one logical processors from 

one physical processor.

• OS can think of logical processors as mutiple

physical processors. � No need to change code.

• However, being aware of logical processors may 

help improve performance.

– Don’t schedule threads from different address space 

on logical processors on the same physical processor.


