
Computer system manipulate objects.-

Use by value: Create a copy of the other object and pass that to the first object.○

Use by reference: Name the other object and pass the name.○

Two ways one object can use another.-

Use by value does not permit sharing.○

Allow designer to defer which object the name refers to until later.○

Why use name?-

value <- RESOLVE(name, context)

status <- BIND(name, context)

list <- ENUMERATE(context)

result <- COMPARE(name1, name2)

Operations○

value = object or another name

binding = a map from a particular name to a particular value

name space = an alphabet of symbols together with syntac rules that specify which
names are acceptable.



name-mapping algorithm = an algorithm that associates some names of the name
space with some values



resolve = to perform the name-mapping algorithm from a name to the
corresponding value



context = one of the inputs to the name-mapping algorithm. The common form is a
set of name-value bindings



universal name space = a name space that has only one context. No matter who
utters the name, the name has the same binding.



free name = a name that is not bound in a context

stable binding = a binding that stays the same for the lifetime of the namespace

Vocabs○

Naming model-

Simple table lookup○

Path name resolution○

Search○

Three types of name mapping algorithms-

Who supplies the context argument in RESOLVE(name, context)?○

Constant built into the resolver

Variable from the current environment

Default context reference = the resolve supplies the context reference○

Per object

Per name (quantified name)

Explicit = specified by the object○

Actually, the context argument is not the object. It is itself is a name, called the context
reference. Resolver must resolve the context reference to a real context object. So,
resolving is recursive. This recursion must end somewhere.

○

Object that utters the name does not provide an explicit context, and the name
resolver chooses the wrong context.



Hard to pass name from one context to another.□

Example: Phone numbers□

Different contexts might bind different names for the same object.

Problems○

Default and explicit context reference-

Explicitly include a reference to the context in which it should be resolved.

Path name○

Path names and naming networks-

Name, Binding, and Reference
Monday, November 26, 2007
9:16 PM

 6.033 1

Explicitly include a reference to the context in which it should be resolved.

Least significant component = the name□

All other parts = reference to the context in which the name is to be resolved.□

Have multiple components.

Recursive! Need to resolve the reference to the context (which itself is a path name)
before we can resolve the name.

○

Root context built in to the resolver.

The resolver can store the path name of the default context. This needs to be
resolved again. (Think working directory).



Default context references for path name (the recursion must end somewhere!)○

Absolute path name = resolved using root context.○

Relative path name = resolved using the path name to the default context.○

Contexts are objects.

Each context may bind a name to other contexts.

Name resolve chooses one context as root, and traces a path from the root to the
first named context in the path name, and then the next, and so on until the path
name runs out.



Different objects can have different path names in a naming network.

Names that refer to the same objects are synonyms.

Users may express path names relative to different roots. So it's hard for them to
share names.



Naming network○

Naming network that is actually a tree.

Root context is the root of the tree.

Every object has a unique path name.

Very constraining. Not found in practice.

Naming hierarchy○

Can add indirect names (names that are resolved to another path name) to naming
hierarchy to permit cross-hierarchy linking.

○

Use an ordered list of contexts instead of a single default context.○

Name resolver tries to resolve the name in the first context. If the result is not-found,
then it tries the next context. This repeats until the list is exhausted or the resolver finds
the first context that the name has a binding.

○

Search path is usually implemented as a per user list. This permits user-dependent
binding. (Think about PATH variable.)

○

Search-

Found in programming languages○

Context are arranged into layers.○

When the resolver cannot resolve a name in some layer, it tries resolving the name in the
enclosing layer.

○

Scope = the range of layers a name is bound to the same object.○

Global name = a name that is bound only in the outermost layer.○

Context Layers-

How did you know to use this name?○

Exporter advertise the existence of the name.

Importer searches for an appropriate advertisement.

Name discovery protocol = inform an object's importer the name that the object exports.○

Well-known name = a name advertised so widely that it can be counted on to be
stable.



Broadcast

Search = ask google

Reverse broadcast = ask everyone whether he/she knows the name of something

Narrowcast: Send "hello my name is …" down the wire and hope that the other end
will listen and reply.



Introduction = party and dating services

Physical rendezvous

Forms○

Name discovery-

 6.033 2

Physical rendezvous

Modular sharing = can use an object, which itself is modular, without knowing the names
of modules it uses.

○

Serious problem because resolving it means changing ways in which objects use
name. This means changing the object itself!



Name conflicts is a syndrome of the lack of modular sharing.○

Imposed names = names chosen by someone else○

Common way to provide modular sharing: give each object its own context, and figure out
a way to cross reference between contexts.

○

Programming languages use static scoping and closure to solve this problem. This
mechanism is not found in file systems.

○

Names and modular sharing-

Name

Location

Time modified

Etc.

Metadata = information about the object that is not a part of the object itself.○

hello.c

Leonardo da Vinci

Physical address

ZIP Code

Overloaded name = name that has metadata in it○

Pure name = no metadata inside, so has no relation to the object it refers to.○

Directory name /disk05. What if you move all the files to Disk 4 instead?□
Unstable name

Tension between name stability and the need to update the overloaded information.

Problems with overloaded name.○

Name of a physical location or a virtual location that maps to physical location.

Addresses are always overloaded. It always has information about the physical
location of the object being referred to.



Address adjacency and physical adjacency go together. Arithmetic on addresses
have corresponding physical meanings.



Addresses are extremely unstable.

Address○

Hide unstable name with indirection.

Have user of the object refer to the object by a generic name.

The generic name itself is bound to the unstable name.

Can change the generic-unstable-name binding later.

Every problem in computer science can be solved with another layer of indirection.

How to cope with unstable names?○

Metadata and name overloading-

Use consecutive integers as names.○

It's hard for a real machine to be perfectly random.

Choose names at random from a large name space.○

But names generated this way is very unstable.

Use hash functions.○

Useful for assigning names in a geographically distributed system.

Exploit delegation

Host names.□

MAC addresses□

Examples

Hierarchical naming scheme.○

Generating unique names-

A name that outlives its binding.

Dangling name○

Relative lifetime of names, values, and bindings-

 6.033 3

A name that outlives its binding.

Resolve to irrelevant values or not-found.

Can lead to serious errors when names are reused.

Can be dealt with by verifying the object resulted from resolution if it meets the
name user's expectation.



An object that outlives its binding.

Cannot be accessed by names again.

Can be dealt with by reference counting or garbage collection.

Orphan○

 6.033 4

