
Computer system manipulate objects.-

Use by value: Create a copy of the other object and pass that to the first object.○

Use by reference: Name the other object and pass the name.○

Two ways one object can use another.-

Use by value does not permit sharing.○

Allow designer to defer which object the name refers to until later.○

Why use name?-

value <- RESOLVE(name, context)

status <- BIND(name, context)

list <- ENUMERATE(context)

result <- COMPARE(name1, name2)

Operations○

value = object or another name

binding = a map from a particular name to a particular value

name space = an alphabet of symbols together with syntac rules that specify which
names are acceptable.

name-mapping algorithm = an algorithm that associates some names of the name
space with some values

resolve = to perform the name-mapping algorithm from a name to the
corresponding value

context = one of the inputs to the name-mapping algorithm. The common form is a
set of name-value bindings

universal name space = a name space that has only one context. No matter who
utters the name, the name has the same binding.

free name = a name that is not bound in a context

stable binding = a binding that stays the same for the lifetime of the namespace

Vocabs○

Naming model-

Simple table lookup○

Path name resolution○

Search○

Three types of name mapping algorithms-

Who supplies the context argument in RESOLVE(name, context)?○

Constant built into the resolver

Variable from the current environment

Default context reference = the resolve supplies the context reference○

Per object

Per name (quantified name)

Explicit = specified by the object○

Actually, the context argument is not the object. It is itself is a name, called the context
reference. Resolver must resolve the context reference to a real context object. So,
resolving is recursive. This recursion must end somewhere.

○

Object that utters the name does not provide an explicit context, and the name
resolver chooses the wrong context.

Hard to pass name from one context to another.□

Example: Phone numbers□

Different contexts might bind different names for the same object.

Problems○

Default and explicit context reference-

Explicitly include a reference to the context in which it should be resolved.

Path name○

Path names and naming networks-

Name, Binding, and Reference
Monday, November 26, 2007
9:16 PM

 6.033 1

Explicitly include a reference to the context in which it should be resolved.

Least significant component = the name□

All other parts = reference to the context in which the name is to be resolved.□

Have multiple components.

Recursive! Need to resolve the reference to the context (which itself is a path name)
before we can resolve the name.

○

Root context built in to the resolver.

The resolver can store the path name of the default context. This needs to be
resolved again. (Think working directory).

Default context references for path name (the recursion must end somewhere!)○

Absolute path name = resolved using root context.○

Relative path name = resolved using the path name to the default context.○

Contexts are objects.

Each context may bind a name to other contexts.

Name resolve chooses one context as root, and traces a path from the root to the
first named context in the path name, and then the next, and so on until the path
name runs out.

Different objects can have different path names in a naming network.

Names that refer to the same objects are synonyms.

Users may express path names relative to different roots. So it's hard for them to
share names.

Naming network○

Naming network that is actually a tree.

Root context is the root of the tree.

Every object has a unique path name.

Very constraining. Not found in practice.

Naming hierarchy○

Can add indirect names (names that are resolved to another path name) to naming
hierarchy to permit cross-hierarchy linking.

○

Use an ordered list of contexts instead of a single default context.○

Name resolver tries to resolve the name in the first context. If the result is not-found,
then it tries the next context. This repeats until the list is exhausted or the resolver finds
the first context that the name has a binding.

○

Search path is usually implemented as a per user list. This permits user-dependent
binding. (Think about PATH variable.)

○

Search-

Found in programming languages○

Context are arranged into layers.○

When the resolver cannot resolve a name in some layer, it tries resolving the name in the
enclosing layer.

○

Scope = the range of layers a name is bound to the same object.○

Global name = a name that is bound only in the outermost layer.○

Context Layers-

How did you know to use this name?○

Exporter advertise the existence of the name.

Importer searches for an appropriate advertisement.

Name discovery protocol = inform an object's importer the name that the object exports.○

Well-known name = a name advertised so widely that it can be counted on to be
stable.

Broadcast

Search = ask google

Reverse broadcast = ask everyone whether he/she knows the name of something

Narrowcast: Send "hello my name is …" down the wire and hope that the other end
will listen and reply.

Introduction = party and dating services

Physical rendezvous

Forms○

Name discovery-

 6.033 2

Physical rendezvous

Modular sharing = can use an object, which itself is modular, without knowing the names
of modules it uses.

○

Serious problem because resolving it means changing ways in which objects use
name. This means changing the object itself!

Name conflicts is a syndrome of the lack of modular sharing.○

Imposed names = names chosen by someone else○

Common way to provide modular sharing: give each object its own context, and figure out
a way to cross reference between contexts.

○

Programming languages use static scoping and closure to solve this problem. This
mechanism is not found in file systems.

○

Names and modular sharing-

Name

Location

Time modified

Etc.

Metadata = information about the object that is not a part of the object itself.○

hello.c

Leonardo da Vinci

Physical address

ZIP Code

Overloaded name = name that has metadata in it○

Pure name = no metadata inside, so has no relation to the object it refers to.○

Directory name /disk05. What if you move all the files to Disk 4 instead?□
Unstable name

Tension between name stability and the need to update the overloaded information.

Problems with overloaded name.○

Name of a physical location or a virtual location that maps to physical location.

Addresses are always overloaded. It always has information about the physical
location of the object being referred to.

Address adjacency and physical adjacency go together. Arithmetic on addresses
have corresponding physical meanings.

Addresses are extremely unstable.

Address○

Hide unstable name with indirection.

Have user of the object refer to the object by a generic name.

The generic name itself is bound to the unstable name.

Can change the generic-unstable-name binding later.

Every problem in computer science can be solved with another layer of indirection.

How to cope with unstable names?○

Metadata and name overloading-

Use consecutive integers as names.○

It's hard for a real machine to be perfectly random.

Choose names at random from a large name space.○

But names generated this way is very unstable.

Use hash functions.○

Useful for assigning names in a geographically distributed system.

Exploit delegation

Host names.□

MAC addresses□

Examples

Hierarchical naming scheme.○

Generating unique names-

A name that outlives its binding.

Dangling name○

Relative lifetime of names, values, and bindings-

 6.033 3

A name that outlives its binding.

Resolve to irrelevant values or not-found.

Can lead to serious errors when names are reused.

Can be dealt with by verifying the object resulted from resolution if it meets the
name user's expectation.

An object that outlives its binding.

Cannot be accessed by names again.

Can be dealt with by reference counting or garbage collection.

Orphan○

 6.033 4

