
Operating system (OS) = program that manages computer hardware.-

CPU

Memory

I/O devices

Hardware○

Operating system○

Application programs = oriented to solve users' problems○

Users○

Computer system-

Resource allocator○

Prevent errors and improper use of the computer.

Control program○

OS' roles-

Provides the lowest level of abstraction for resources.○

Kernel = the one program that runs all the time. (This definition might not be correct. If the
computer is in user mode, then the kernel doesn't run at that time.)

-

Computers are generally devices connected through a bus.○

Programs are stored as data in memory.

To execute program, the CPU loads instruction as data, and interpret it.

The CPU keeps track of the current instruction using the instruction register or
program counter or instruction pointer.



We use von Neumann architecture.○

CPU have fast registers.

Programs has to be in main memory to be executable.

Typically implemented using semiconductor memory.

Is accessed randomly. (Hence, Random-access Memory (RAM).)

Fast, but not as fast as registers, and is very expensive.

Is typically volatile.

Main memory is the memory that CPU can access directly.

Usually magnetic disk.

Non-volatile.

Slow, but inexpensive.

Offers more space.

Programs are stored in disk until it is to be executed. In that case, it is loaded
to main memory.



Secondary storage.

CD-ROM, DVD-ROM, and tapes.

Tertiary storage

Can be arranged into a hierarchy such that, the closer to the CPU a memory is, the
fast, the smaller, and the more expensive it is.



Storage structure○

Connected to the CPU via a bus.

A device driver talks to the I/O device, and provides an interface of the device to
the user.



Device drivers sends interrupt to CPU if something happens.

I/O○

Computer system structure.-

Multiprogramming = increasing CPU utilization by organizing jobs so that CPU always

Operating system abilities-

Chapter 1: Introduction
Saturday, November 03, 2007

5:09 PM

 Silberschatz 1

Example: Most program will wait for interrupts. While the program waits, the OS can
run another task.



Multiprogramming = increasing CPU utilization by organizing jobs so that CPU always
has one to execute.

○

Example: The OS needs to switch context very often to prevent starvation.

Time sharing = execute multiple jobs by rapidly switching among them. Gives the
illusion that all of them are running concurrently. This allows user to interact with
programs at interactive rate.

○

Job scheduling = select one job from the disk to load to the memory and execute. The
jobs that lie in the disk are said to be in a job pool.

○

A program that is loaded into the memory and is executing is called a process.

CPU scheduling = select one job from the jobs in main memory to execute.○

Virtual memory = gives each process an illusion that it has a contiguous piece of
memory all to itself.

○

Fault isolation = one process' failure should not affect others.○

When an event occur, hardware fires an interrupt to the CPU.

Software can also fires interrupt via system calls.

A trap is an interrupt generated by (1) errors or (2) software.

CPU's execution is stopped. 

The CPU's state is saved. 

The control transfers to a fixed location. 

The code at this fixed location dispatches the control to the interrupt service
routine.



Once the routine finished, the control transfers to the user program as if the
interrupt never occurred.



When the CPU receives an interrupt:

Table of pointers that store addresses to interrupt service routines is called
interrupt vectors.



The operation is interrupt-driven in nature.○

User mode

Kernel mode (or supervisor mode)

Modern hardware support two modes of CPU execution

There's a bit in the CPU register that indicates this.

Some instructions are only executable in kernel mode. These are called privileged
instructions. For example, setting various flags, controlling the counter, or output
to ports.



User programs are executed while the CPU is in user mode. So it cannot manage
hardware by itself. On the other hand, kernel is executed in kernel mode, so it can
do everything.



If the user program wants to do something not in its power, it requests the kernel to
do so via a system call.



A system call is implemented as a software interrupt in Intel 80x86. Some chips have
built-in syscall instruction.



After the system call is invoked, the CPU switches into kernel mode. The interrupt is
handled by the interrupt service routine for that particular interrupt. This interrupt
service routine parses additional information that comes with the system call to
determine what the user program want to get served, and gives appropriate service.
It then transfers the control back to the user program.



Dual mode operation○

To prevent a process from hogging CPU cycles, the OS makes uses of the timer that
comes with the CPU.



The OS would set the timer to fires an interrupt every now and then. Typically every
10ms.



The timer interrupt would cause the OS to run the scheduler, and switches to
another process if appropriate.



This is used to achieve time sharing. Also called preemptive scheduling.

Timer○

Operating system operation-

 Silberschatz 2

Gives the illusion that each process has the CPU to itself.

Creating and deleting processes

Suspending and resuming processes

Providing mechanisms for process synchronization

Providing mechanisms for process communications

Providing mechanisms for deadlock handling

Process management○

Gives the illusion that each process has a contiguous array of memory to itself.

Keeping track of which parts of memory are currently being used and by whom.

Deciding which processes and data to move into and out of memory (job scheduling
and virtual memory)



Allocating and deallocating memory

Memory management○

File system is the abstraction of the storage.

File = collection of related information defined by the creator.

Create and delete files

Create and delete directories

Provide primitives for manipulating files and directories

Mapping files onto secondary storage

Backing up files on nonvolatile storage media

File system management○

Cache = a fast memory that is used to mirror data from slower memory (or
computation process) to improve efficiency.



Compiler manages register (cache of L1 and L2 cache)

CPU manages L1 and L2 cache (cache of main memory)

OS manages the disk cache (cache of secondary storage)

In multi-processor environment, have to maintain cache coherency = the caches
at different processors have to contain the same value.



Caching○

Buffering, caching, and spooling for I/O devices.

General driver interface.

Drivers for specific hardware devices.

I/O System Management○

Example: preventing processes from accessing other processes memory or
files.



Protection = controlling access to system resources

Security = defend system from internal and external attacks

Both require system to be able to distinguish users from non-users. Most implement
some kind of user ID, and group ID.



Protection and security○

What do operating system do?-

Network = communication path between two systems. Varies by protocols used,
distance between nodes, and the transport media.

○

Network operating system= operating system that provide network and distributed
system functions such as distributed file system, and a communication protocol.

○

Network OS might provide an illusion that all the systems across the network are running
a single OS.

○

Network operating system-

Must finish some tasks before a deadline. Otherwise, the system will fail.○

This is different from OS in time-sharing system, which must only ensure that the users
get quick responses.

○

Real-time operating system-

Must manage scarce memory.○

Must cope with slow processor.○

Must take power into account.

Handheld operating system-

 Silberschatz 3

Must take power into account.○

 Silberschatz 4

