
What services the OS provide --- User's view.○

What interface the OS provide --- Programmer's view.○

What the components are --- Designer's view.○

View operating system from 3 angles.-

Shell = command line interpreter□
Command-line user interface (CLI)

Users can type a command into a file, and have the OS run it.□
Batch user interface

Graphical user interface (GUI)

User Interface○

Load program

Run program

End execution of program

Program execution○

I/O operations○

Read, write, create, delete files and directories.

Search and display file information.

Permission management.

File-system manipulation○

Processes□

Computer systems□

Manage communications between

Shared memory□

Message passing□

Communications can be implemented by

Communications○

Error detection○

CPU cycles

Main memory

File storage

I/O devices

Resource allocation○

For billing

For performance tuning

Accounting = keeps track how much users use resources○

Processes executing concurrently should not be able to interfere with one another or
with the operation of the operating system.



Protection and security○

Operating System Services-

An interface for operating system services.○

Programmers rarely invoke system calls directly. They work with application
programming interface (API), which specifies functions programmers can call, their
parameters , and their return values.

○

WIN32 API

POSIX API (Unix, Linux, and Mac OS X)

Java API

Three common API○

API invoke system calls on programmer's behalf.○

Portability

System calls are hard to work with.

Why we should use API?○

Transfer control into kernel mode.

What does system call do?○

System calls-

Chapter 2: System Structures
Saturday, November 03, 2007
2:01 PM

 Silberschatz 1

Transfer control into kernel mode.

Run the implementation of the system call in kernel mode.

Return the output to the user program, and transfer control back.

System calls are numbered. There's usually a table that maps system call numbers to the
address of the part of the kernel that implements it.

○

Registers

Block (aka, a memory page)

Stack

Three ways of passing parameters to a system call.○

end = end process normally□

abort = end process abnormally□

end, abort

Useful for programs that run other programs, such as command interpreter.□
load, execute

Useful for programs that want to run concurrently with its children.□
create process, terminate process

Useful for process coordination□
wait for time, wait event, signal event

Dump memory image of a process to file system.□

Useful for debugging.□

dump

allocate and free memory

Process control○

create file, delete file

open, close

read, write, reposition

get file attribute, set file attribute

File management○

request device, release device

read, write, reposition

get device attributes, set device attributes,

logically attach or detach devices

Device management○

get time or date, set time or date

get system data, set system data

get process file, or device attributes

set process, file or device attributes

Information maintenance○

create, delete communication connection

send, receive messages

transfer status information

attach or detach remote devices

Communications○

Types of system calls.-

Provide a convenient environment for program development and execution.○

Create, delete, copy, rename, print, dump, list files and directories.□

ls, rm, mv, cat□

File management

Date, time, available memory on disk, number of users, etc.□

Performance, logging, and debugging information.□

Registry = store and retrieve configurations□

date, time, df□

Status information

Compilers, assemblers, debuggers, and interpreters.□

C, C++, Java, Perl□

gcc, g++□

Programming-language support

Categories○

System programs-

 Silberschatz 2

gcc, g++□

Absolute loader, relocatable loader, linkage editor, overlay loader□
Program loading and execution

Creating communication channels among users, processes, and computers.□

Send and receive messages.□

xinetd, ping, ifconfig□

Communication

Mechanism = how to do something.

Policy = what to do.

Policy will change in time.□

Needs mechanism that is insensitive to policy change.□

Policy change -> only some tweaks in system parameter, not a
reimplementation.

□

Why?

Basic building blocks in kernel.□

User can implement mechanism and policy via kernel modules or in user
program.

□

Solaris: scheduling controls by a table.□

Windows, Mac OS X: mechanism and policy hardcoded into the kernel. Ensure
uniform look and feel.

□

Microkernel

Separation of policy from mechanism.○

Most commonly in C or C++

Some sections in assembly code.

Code easier to understand and debug.□

MS-DOS, written in 8088 assembly language, can only run on Intel
processors.



Linux, written in C, can run on Intel, Motorolla, IBM, SPARC, and other
chips.



Portability□

Why program in high level language.

Performance□

This is not really relevant today because compilers are good at optimization.□

Most performance boost comes from better data structures and algorithms.□

Why not program in high level language.

Implementation○

Operating system design and implementation-

Design principle: Decompose the system into components. Each have well-defined
interface.

○

Layer 0 = hardware

Layer N = user interface

A layer = a collection of abstract data types and operations the outer layer can
invoke. The layer itself can in turn invoke inner layers' operations.



East of construction and debugging.□

Information hiding and decoupling.□

Advantage

Backing store (= disk space used by virtual memory algorithm) needs to
be below memory management, and also needs to be above process
scheduling. However, process scheduling might need backing store
because it cannot keep all process data in main memory.



Coming up with right layer abstraction is hard.□

Less efficient than other type of structures.□

Drawbacks

Layered Approach○

Simple structure (ad hoc?)

Monolithic Kernel

Microkernel

Four types of structure.○

Operating system structures-

 Silberschatz 3

Microkernel

Modular kernel

First generation operating systems like MS-DOS or Unix.

Limited by hardware feature. (8088 has no kernel mode.)□

Leave hardware accessible to application programs.□

No prevention of fate sharing.□

MS-DOS

Simple structure○

Every device driver, file system code, etc is in the kernel.

Drawbacks: Difficult to implement and maintain.

Advantage: Performance.

Old operating systems. Mostly limited by hardware.

Examples: Linux, Unix, MS-DOS.

Monolithic kernel○

Remove non-essential parts from the kernel and implement them as system and
user-level programs.



Small kernel.

Mach = first system, developed at CMU.

Process management□

Memory management□

Communication□

Functionality provided

Main duty = provide communication between applications and system programs that
are also running in user space.



Communication via message passing.

User program and system program never interact directly. They communicate by
exchange messages with the kernel.



Extensibility.□

Portability.□

If one service fails, other services can still run.

Security and Reliability.□

Benefit

Performance.□
Drawbacks

Examples: Tru64 Unix, Mach, QNX.

Microkernels○

Kernel has a set of core components and dynamically links in additional services.

Example: Unix, Solaris, Linux, Mac OS X

Can be thought of as monolithic kernel?

Similar to microkernel, but is more efficient.

Modular kernel○

Mac OS X

One layer is Mach microkernel. Provides memory management, RPC,
interprocess communication (IPC), and thread scheduling.

□

Another layer is BSD monolithic kernel. Provides command line interface,
network and file system, POSIX API.

□

Layered kernel. 

Kernel extensions = idea borrowed from modular kernel.

Hybrid kernel○

Abstract CPU, memory, storage into separate environments.○

Each environment has the illusion that it runs on a private machine.○

Has the illusion that it has to computer for its own exclusive use.

The interface is different.

Process' interface = system calls

Virtual machine's interface = machine instructions.

Similar to process.○

The ability to run different OS in the same machine concurrently.

Using VM, service provider is exempt from providing a centralized set of application 

Why?○

Virtual Machines-

 Silberschatz 4

Using VM, service provider is exempt from providing a centralized set of application
software for all users.



When a user program in a VM invokes a system call, the control transfers to VM
monitor which stays in the kernel of the real machine's OS. The monitor then
changes the register content and program content and simulate various other things,
and then transfer control to the VM's kernel.



Systems with virtual machines can be slower than systems without one.

Easy on IBM machine, because normal instructions can be executed directly by the
CPU. This is hard in SGI chips and IRIX.



Implementation○

Complete protection of system resources. No direct sharing.

Fault isolation.

Perfect for OS development. Eliminate downtime.

Shared files implemented in software.□

Through virtual network device.□

How can two virtual machines share resources or communicate?

Benefits○

Works on Intel 80x86.

Guest operating systems on virtual machines.

VMWare○

Booting = starting a computer by loading the kernel.○

Bootstrap program (aka booststrap loader) locates the kernel into main memory, and
executes it.

○

Bootstrap program might load a complex program (such as LILO or GRUB) that allows the
user to choose a kernel, which is then loaded. Or it may diagnose the state of the
machine.

○

When a CPU receives a reset event, the instruction pointer is loaded with a predefined
location, contained in the ROM, and the bootstrap program then starts.

○

Handheld devices store their OS in firmware, usually ROM or EPROM (erasable
programmable ROM). Firmware is non-volatile, but is slow and expensive.

○

For larger system, bootstrap loader is stored in firmware. The bootstrap loader will load
code from a fixed block of the disk, called boot block. The code in the boot block will in
turn determine the state of the system, and allow the user to choose which OS to load.
Then, it will load the OS.

○

A disk with boot partition is called boot disk or system disk.○

After the bootstrap program starts running the kernel, we say that the system is running.○

System boot-

 Silberschatz 5

