
Named collection of related information.○

Recorded on secondary storage.○

Smallest unit of logical secondary storage.○

A sequence of bytes, basically.○

File-

Name = human readable name○

Identifier = unique number = non-human readable name○

Type○

Location = pointer to the device and the location of the file on the device○

Size○

Protection = who can read, write, or execute the file?○

Time, date○

User identification = which user and which group of users own the file○

File Attributes-

A list of directory entries.○

Directory entry = file name, and unique identifier○

File identifier is used to locate other file attributes (in a centralized table, perhaps)○

Directory is stored on secondary storage as well. So it may be treated as a file.○

Can be nested to form a hierarchy of directories and files.○

Directory-

Find a space for it.

Make new entry in the containing directory.

Creating a file○

Input = file name, write pointer, content to write

Search for the file in the directory structure.

Write to it.

Update write pointer.

Writing a file○

Input = file name, read pointer, pointer to where to put the data read

Search for the file in the directory structure

Read data to the location pointed to by the pointer

Update read pointer

Reading a file○

Since a process normally either reads or writes a file, there's usually no need for
separate read and write pointer.

Instead, we have a per-process file-position pointer.

Input = filename, new position to seek to

Search for the file in the directory structure

Update file-position pointer

Repositioning (seek)○

Release all file space

Update directory

Delete a file○

Remove all file content, but let directory entry survive.

Truncate a file○

Basic Operations-

To avoid having to search for the file again and again, some system require user to open
a file before reading and writing it.

○

Information about opened file is kept in open-file table.

Open-

Chapter 10: File System
Thursday, November 08, 2007

11:46 AM

 Silberschatz 1

Information about opened file is kept in open-file table.○

When a file is no longer being actively used, it is closed, and the corresponding entry in
the open-file table is removed.

○

Create and delete operation do not require opening a file.○

Per-process open-file table: Keeps file-position pointer of the process, access rights,
accounting information, and pointer to the corresponding entry in the system-wide
process.

System-wide table: location of file on disk, access date, file size, and open count.

When many processes access a file at the same time, the system usually keeps two level
of open-file table.

○

File pointer = where in the file a process is reading or writing.

File-open count = Add one when a process opens the file. Subtracts one when a
process closes the file. When zero, the system-wide open-file table entry is removed.

Disk location

Access rights = who can do what to a file.

Information associated with an open file○

Locking a file allows one process to prevent other processes from doing something to a
file.

○

Shared lock: Several process can acquire the lock together. Usually, it is the read
lock. When a process has the lock, other processes cannot write to the file.

Exclusive lock: Usually a writer lock. When one process has it, no process can read
or write the file.

Types of locks○

Mandatory lock = OS enforces the lock.

Advisory lock = The system does not prevent other processes from gaining access
to the locked file. User program must be written so that it acquires the lock before
gaining access.

Windows implements mandatory locks. Unix uses advisory locks.

Lock enforcement○

User must be careful of deadlocks.○

File Locking-

A design decision: Should the OS support some types or structures of file?○

Running a text file as executable.□

Printing an executable file.□

To prevent common mistakes

OSX expects every file to have resource fork and data fork.□

In an executable file, user can change resource fork to change the label of a
button in the program.

□

The data fork is the traditional file content.□

Relieve programmers of tedious work.

Why?○

OS becomes large and complex if it supports a lot of file types or structures.

MS-DOS and Unix thinks that files are sequence of byte, and leave user programs to
deal with the file content themselves.

Why not?○

File extension.

OSX keeps name of the program that created the file.□

Embedding file type information in file information kept by the file system.

Unix uses it to identify executable, batch file, PostScript file, etc.□

Magic number stored at the beginning of the file.

How?○

All operating system must support one file type though: executable file.○

File Types and Structures-

Information is accessed one record after another.

Most common.

Sequential Access○

Access Methods-

 Silberschatz 2

Most common.

Tape model.

A file is made up of fixed length logical records.

Programs can read and write records in no particular order.

Disk model: disk contains blocks, and allows random access to blocks.

User normally provide relative block number relative to the beginning of the file
to address a particular block.

Direct Access○

Simulating sequential access on direct access file is easy. The other way around is
inefficient.

○

Usually used in database.

The data is indexed using some keys. The system keeps a small index table in
memory.

To search for a data item, the given key is used to binary search the index. The
index table then contains the pointer to the location of the corresponding record on
the disk.

For large files, the index file itself may be too large to fit in the disk. The solution is
to keep the index as a file, and make index for the index itself.

Example of such a system is IBM's indexed sequential-access method (ISAM)

Indexed Access○

Partition = a contiguous slice of the disk space.○

Volume = parts of disks (can be more than one disk) that contains a single file system.○

Device directory or volume table of contents keeps information of all files in the
system such as location, size, type, and name.

○

Storage Structure Vocab-

Symbol table: Maps file name to the directory entry, which contains file information.○

Search for a file

Create a file

Delete a file

List the entries

Rename a file

Scanning for virus, for example.□

Traverse the file system

Operations○

A directory contains a set of files of subdirectories.□

All directories have the same internal format.

One bit in each directory entry specifies whether the file is a regular file
or a directory.

System calls are used to create and delete directory.(Well, in monolithic
kernel, that is.)

A directory is just another file, but is treated in a special way.□

Changing it is done through a system call.

The current directory of a subprocess is usually the one of the parent
process.

Each process has current directory. □

When the user make reference to a file, the file is searched in the current
directory first. If the file is not found, then the search path (a sequence of
directories specified by the user) for the process is used to search for the file.

□

Absolute path name: Begin at the root.

Relative path name: Defines a path from the current directory.

Path names□

User can impose structure onto his/her files.□

Tree Structured Directories

Permits directories to share of files and directory. Same file can be in one or □

Directed Acyclic Graph Directories

Organization○

Directory (cont.)-

 Silberschatz 3

two directories.
□

When one user makes change to the shared file, other users see the change as
well.

□

A new type of directory called a link, which is a pointer to another
file.

◊

Links to a file are counted.◊
Files can only be deleted when the last link to it is removed.◊
Used in Unix.◊
Unix prohibit links to directory to ensure acyclic nature of the
directory structure.

◊

Hard Links

The link is just an absolute or relative path name.◊
When the user program references a link, the link is resolved by
using the information contained therein to find the real file.

◊

When the file system is traversed, this links are typically ignored.◊
Used in Unix as well.◊

Symbolic Links

Two directories may contain the same directory entries.◊
Have to maintain consistency of information between directories
when the file is modified.

◊

Duplicating directory entries.

Implementation□

When traverse a file system, we may operate on a file more than once.

Very problematic with the duplicate directory entry approach.◊
Deleting the file from one directory leaves dangling pointers.◊
What if the dangling pointer points inside another file?◊
With symbolic link, it's a lot easier. Dangling links doesn't hurt
anyone.

◊

Have to be careful when deleting a file.

Problems□

Needs to keep track which parts have been traversed. Very expensive
when the size of the graph is as large as the disk.

Traversing becomes difficult.□

Have to use garbage collection to reclaim space. Very expensive again.

Safe deletion becomes difficult.□

Problems with cycles in file system.

A file system must be mounted before it becomes available to the processes.○

Input consists of a device name, and a mount point, which is location within the
file directory structure where the directory structure on the device will be attached.

Typically, a mount point is an empty directory.

OS inspects that the device has a directory structure in the specified format.

OS records that a file system is attached to the mount point.

Mounting procedure○

When the Macintosh OS discovers a new disk, it mounts the disk on the root level,
using the device name as the mount point.

Windows discovers disks at boot time and mount the file system using drive letters
as mount points. It maintains a two level directory structure, with the top level being
devices, each with a number of drive letters for the volumes contained therein.

The mount command is used explicitly in Unix. There's a file called fstab that tells
Unix which devices to mount and where to mount file systems at boot time.

Mounting in some OS○

File System Mounting-

Notion of file owner and file group.

Read, write.□

Change attributes.□

Grant accesses.

Owner can do anything to a file.

Handling multiple users.○

File Sharing-

 Silberschatz 4

Grant accesses.□

Group = users that can share access to a file (can only do a subset of operations to
it.)

All other users can perform another subset of operations.

What operations are allowed are determined by the owner.

Owner and group IDs are stored with the other file attributes.

User from another machine can mount file systems or directories on other machines.

Machine containing the files = server. Machine seeking access to the file = client.

Must have a mechanism for granting access to appropriate user, and prevent
spoofing of names. This can be handled by Distributed Information Systems.

One other important thing DFS has to deal with is failures of network. Consider the
scenario when a network goes down while one client is reading or writing a file, for
example.

To implement recovery, the DFS has to maintain some state information at both
the client side and the server side.

NFS protocols carry all information about the file being operated, the file
pointer, etc, so that operations can be performed without keeping information
about which file is opened.

□

NFS is very easy to implement.□

NFS thinks that all requests are valid. So it may be possible to forge read or
write requests.

□

Newer versions of NFS is made stateful to improve security and performance.□

Sun Network File System (NFS) takes the stateless approach.

Distributed file system (DFS)○

Specify when modifications to file by one user is visible to other users.

File session = everything between matching open() and close().

Writes to an open file by a user is immediately visible to other users.□

One mode of sharing allows user to share pointer to current location of a file.
So a write by one user updates the file pointer other users see as well.

□

Unix semantics

Writes to an open file by a user is not visible immediately.□

When a file is closed, changes made to it are visible only to file sessions started
later.

□

Almost no constraints are enforced!□

Session semantics (Andrew File system (AFS))

Once a file is declared "shared," its content may not be altered, and its name
cannot be rebound to anything else.

□

Immutable-shared-files semantics

Consistency Semantics○

Protect = prevent improper access○

Read = can read

Write = can write, or rewrite the file

Execute = load the file to memory and execute it

Append = write to the end of the file

Delete = delete the file

List = list the names and attributes of the file

Typically, protections of these accesses are implemented. Other types of accesses
can be thought of combinations of these accesses. Therefore, protections of the
above accesses extend to other types of accesses as well.

Types of Access○

Who has which type of access to which file?

A list of users and the type of accesses he has to the file□

Enable complex access control□

But the list can be long and hard to maintain.□

Also complicates disk space management.□

Access-control list

Owner-group-universe access control

Access control○

Protection-

 Silberschatz 5

Owner = can do everything to a file

Group = A set of users sharing the file, typically designated by the owner.

Universe = All other users.

Three classifications of users□

In Unix, implemented with rwx bits for owner, group, and universe. So 9 bit
each for a file.

□

Owner-group-universe access control

Every file has the 9 rwx bits.□

Users can also add access-control list.□

Access-control list overwrites rwx bits.□

Modern OS combines the two approaches.

Passwords for reading, writing, and executing files.

Other protection approach.○

 Silberschatz 6

