
File system = a system stores files on secondary storage.-

A disk may have more than one file system.-

Disk are divided into blocks, the smallest contiguous fragment of the disk that can be read at a
time. Typically, a block is 512 bytes.

-

Application programs -> logical file system -> file-organization module -> basic file
system -> I/O control -> device

○

Device drivers

Outputs bit patterns at specific ports.

I/O control layer○

Outputs high level commands such as "read block 123."

Is there to issue command to appropriate devices.

Basic file system layer○

Maps logical blocks (indexed 0 to N) to physical blocks.

Manage free space.

Manage how to store blocks.

File-organization module○

Name□

Length□

Date□

Type□

Manages metadata = things about the file except the actual data.

Metadata are stored in file control blocks (FCB)

Manages symbolic file names.

Responsible for protection and security.

Manage directory structures.

Logical file system○

File system layers-

Unix file system (UFS)○

Extended file system (EFS) --- Linux○

FAT, FAT32, NTFS --- Windows○

ISO 9660 --- CD-ROMs○

Examples-

Where the kernel resides on the disk.

Contains information needed to boot an operating system contained in the
volume.

□

Called boot block in UFS, partition boot sector in Windows.□

Boot control block (per volume)

Number of blocks

Free block counts

Free block pointers

FCB counts

FCB pointers

Contains volume details□

Called super block in UFS, and master file table in NTFS.□

Volume control block (per volume)

Metadata = permission, size, date, location on disk, etc.□

In UFS, this is called the inode.□

NTFS stored these information in the master file table.

FCB (per file)

On-disk structures○

File system implementation.-

Chapter 11: Implementing File Systems
Thursday, November 08, 2007

9:55 PM

 Silberschatz 1

NTFS stored these information in the master file table.□

UFS treats directories as files.□

NTFS treats file and directories separately. Directory structure is stored in the
master file table.

□

Directory structure

Which volume is mapped to which directory?□

Mount table

Directory information of recently accessed directories.□

Directory structure cache

A copy of FCB for each open file.□

System-wide open-file table

Per-process file-location pointer□

Access mode.□

Link to the corresponding entry in system-wide open-file table.□

Per-process open-file table

In-memory structures○

The file system allocates an FCB.

The file system reads the directory the file is in into memory.

The file system updates the directory in memory.

The file system writes the directory back to the disk.

What happen when a user creates a file?○

The file system searches the system-wide open-file table for the file with the given
name.

If the entry is not found, the file system searches the directory structure for the file
of the given name, loads the FCB of the file from disk, makes new entry in the
system-wide open-file table, and stores the FCB there.

The file system makes an entry in the per-process open-file table, and stores the
pointer to the system-wide open-file table there along with some useful information.

This pointer is called the file descriptor in Unix.□

It is called the file handler in Windows.□

The file system returns the pointer to the entry of the per-process open-file table as
the return value of the open() system call.

The process may now discard the name of the file, as it now can work with the file
through the file descriptor instead.

What happen when a user opens a file?○

The per-process open-file table entry for the file is removed.

The reference count of the corresponding entry in the system-wide open-file table is
decremented. If the reference count is zero, the entry is removed as well.

What happen when a user closes a file?○

A partition in the disk that does not contains a file system is called raw.

Swap partition = only used as temporary storage of data□

Boot partition = contains programs that used to boot the OS. Cannot have a
file system because, at booting time, the OS and the file system is not loaded
yet.

□

Database engine may use a raw partition so that it can manage the storage by
itself.

□

Raw partitions is used for

Root partition = a partition that contains operating system kernel. Mounted at boot
time.

Partitions○

The OS maintains an in-memory mount table.

The mount table tells which file system is mounted at which location.

The mount table for Windows is very simple. It associates drive letters to volumes.

Unix sets a flag in the in-memory copy of the inode of the mounted directory to
indicate that the directory is a mount point.

□

A field in the inode then points to the mount table, which in turn contains □

The mount table for Unix is more complicated because a file system can be mounted
at any directory.

Mounting○

 Silberschatz 2

pointer to the superblock of the mounted volume.
□

OOP in action

Provides a layer that decouples file-system-specific implementation from
general file system interface.

□

Provides a mechanism for uniquely representing files across networks and
volumes. VFS represent files using vnodes that contains unique numerical IDs
for files across networks

□

Two roles

inode object

File object

Superlbock object

Dentry object = directory entry

Four objects□

Each object has a number of methods.□

Implementations are left to specific file system.□

VFS in linux

Examples: Gmail file system, NFS.

Virtual File System○

O(n) search --- very slow

Mitigate the slowness by software cache --- cache recently used directory
information.

Or we can use sorted list, but insertion is expensive.

We can make insertion and searching in sorted list fast by using B-trees. But this is
very complicated.

Linear list○

Linear list is used to store directory list as usual.

A hash table is used to map file name to the appropriate entry in the list.

Problems: It has fixed size. Must reorganize disk storage when we grow the table.

Hash table○

Directory Implementation-

How to allocate free space for a file?○

Each file occupy a set of contiguous blocks on disk.

Minimal number of head movements to access a file. □

Sequential access is very fast.□

Direct access is also fast.□

Advantage

Can be casted as a general dynamic storage-allocation problem as seen in
memory management.

Suffers from external fragmentation --- when the largest contiguous chunk is not
large enough.

Hard to implement because the size of a file might not be known in advance.

Contiguous space allocated initially.□

If the space is not enough, another contiguous space, called extent, is
allocated.

□

The location of the file then contains the beginning address, the block count,
and the link to the extent.

□

If the extent is too large, then the file system suffers internal
fragmentation.

□

External fragmentation is still a problem.□

Extent system = modified contiguous allocation scheme

Example: UFS

Contiguous allocation○

Directory contains the pointer to the first and last block.□

Each block contains a pointer to the next block.□

File = linked list of disk blocks.

The system must keeps a linked list of free space, but this is easy.

Linked allocation○

Allocation Methods-

 Silberschatz 3

The system must keeps a linked list of free space, but this is easy.

No external fragmentation.□

No need to know the file size in advanced.□

Sequential access is okay.□

Pros

Scheme is inefficient if we were to implement direct access on top of it.□

A file is larger that it should be because some space is used as "next" pointers.□

Reliability: what happen if the pointers are lost of damaged?□

Cons

Collect contiguous blocks into clusters.□

Make linked list of clusters rather than blocks.□

Improves disk throughput.

Decrease space needed to manage free blocks.

Pros□

Internal fragmentation.

Cons□

The approach is used in most systems because it greatly improves
performance.

□

Clustering

A section of disk at the beginning is used to contain the file allocation table.□

The table is indexed by block numbers, and used as linked list. Each entry
contains the next block in the file.

□

Directories contains file name and the start block.□

The last block of a file contains a special end-of-file value in its table entry.
This value is 0.

□

Improve performance by caching FAT in the main memory.□

Example: FAT

Brings all pointers to the file blocks to a single location.□

Each file has its own index block, an array of disk block address.□

The directory contains the address to the index block.□

Supports direct access.

Without suffering from external fragmentation.

Pros□

Wasted space: overhead larger than linked allocation.

Cons□

Too large = large wasted space.

Too small = cannot represent large files.

How large must the index block be?□

Linked scheme: index block contains link to the next index block.

Multilevel index: First level of index block points to index blocks that point
to actual file blocks.

The first 12 pointers point directly to file blocks (direct blocks).
The next three pointers point to indirect blocks.

◊

The first indirect block is the single indirect block, a block
containing pointers to file blocks.

◊

The second indirect block is the double indirect block, a block
containing pointers to single indirect blocks.

◊

The third indirect block is the triple indirect block.◊
Files can be as large as 4GB.◊

Combined scheme: Used in UFS. Keeps 15 pointers in the file's inode.

Index block schemes□

Indexed Allocation

Free-space list keeps track of all free disk blocks. Need not be implemented as a list
though.

○

A huge bitmap in the superblock.

Each block is represented by 1 bit.

1 = free, 0 = allocated.

Bit vector implementation○

Free Space Management-

 Silberschatz 4

1 = free, 0 = allocated.

Simplicity□

Pros

Inefficient if the bitmap if not kept in main memory.□

Bitmap can be really large, especially for hard disks nowadays.□

Cons

Each free block has a pointer to the next free block.

Keeps the pointer to the first free block in emory.

Inefficient to traverse the disk. However, traversing does not happen
frequently.

□

Cons

Linked list implementation○

Stores the address of n free blocks in the first free blocks.

The first n-1 blocks are actually free. The last free block is actually contains the
address of another n free blocks, and so on.

A large number of free blocks can be found quickly. This is an improvement over the
linked list implementation.

Grouping○

Stores address of the first free block, and then the number of free contiguous blocks
following that block.

Each entry in free-space list = address of first block, and a count.

The list can be really large if the hard disk is really fragmented though.

Counting○

Disk head reads all the sectors into the cache.

The request sector is transferred to memory from this cache.

Disk controller has on-board cache that is large enough to store entire tracks.○

Buffer cache stores blocks.

Some OS maintain buffer cache in main memory.○

Maps file data to virtual memory.

Store as pages rather than blocks.

User program interfaces with virtual memory rather than file system blocks.

Using page caching to cache both process pages and file data = unified virtual
memory.

Some OS maintain file data using page cache.○

LRU works well as page replacement algorithm.○

 Synchronous write = write occurs in the order which the disk subsytem receives
them. Calling routine must wait for data to reach the disk before it proceeds.

 Asynchronous write = data to write is stored in cache. The actual write happens
much later, and the order is not the same as the subsystem receives.

 In asynchronous write, the subsystem can arrange the pages to write so as to
minimize seek time.

○ Two types of writes

Caching-

 The file system might suffer from system crashes while the data is being written to
the disk.

 The consistency checker (fsck in Unix, and chkdsk in MS-DOS) finds
inconsistencies between the directory structure and the actual blocks on disk, and
tries to fix them.

 Very effective in linked allocation file system, but not so in indexed allocation
system.

○ Consistency checking

○ Backups

- Recovery

Known as log-based transaction-oriented or journaling file system.○

Example: NTFS and Veritas file system.○

All metadata changes are written sequentially to a log.

Log-structured file system-

 Silberschatz 5

○

All metadata changes are written sequentially to a log.○

Transation = a set of operations to perform a single task.○

Once the changes are written to the log, they are said to be committed. The caller must
wait until a change is committed before it can proceed.

○

Asynchronously, the log is played, and the changes are performed one by one. Once the
change has been performed, the log entry is deleted.

○

The log is stored in a circular buffer.○

When the system crashes, the log may contain some transactions. Transactions that are
committed but has not completed is continued. Changes made by any transactions that
has not been committed is undone.

○

○ Log file structure is fast because we can arrange changes to be made to the disk so that
they can be performed efficiently. Moreover, writing to the log is fast because it's
sequential.

○ Client machine explicitly mounts a directory on a server.

○ If B mounts a directory in A, and C mounts a directory in B containing the directory in A
that B mounted, then C doesn't see A's directory.

○ However, cascading mount is allowed. A client might mount a directory on server A,
and, may mount a directory on server B to a subdirectory of the directory on server A.

○ NFS protocol is implemented using RPC primitives built on top of an external data
represention (XDR) that is independent of particular file systems. As such, NFS can
operate in heterogeneous environments.

 Server has an export list = a list of directories clients can mount.

 When the server receives a mount request, it checks whether the directory the client
wants to mount is in the export list. It also checks other credential information.

 If the client is allowed to mount the directory, the server sends back a file handle for
the client to use for further accesses.

○ Mount protocol

□ Searching for a file within a directory.

□ Reading a set of directory entries.

□ Manipulating links and directories.

□ Accessing file attributes

□ Reading and writing files.

 RPCs

 No open() and close(). NFS is stateless. Each request has a full set of arguments --
file identifier and offset.

 Why? --- No special procedure is needed if the server crashes amidst of an
operation.

 File operations are idempotent.

 An NFS request has a sequence number. This enables the server to determine if a
request is duplicated or if anything is missing.

 Statelessness implies synchrony. Every changes must be written to disk before the
server replies to the client.

 Server crash and recovery is invisible to the client.

 Performance is not that good. Can be improved by using nonvolatile cache though.

 NFS write procedure call is guaranteed to be atomic, and is not intermixed with
other write calls. However, a write() system call might consist of many NFS write
RPC. So users can still get their data intermixed.

○ NFS protocol

 File-attribute cache and file-block cache.

 Cached file blocks are used only if the corresponding file attributes are up to date.
 Cached attributes are discarded every 60 seconds.

 Clients do not free delayed-write blocks before the server tells it that the block has
been written to disk.

□ Results of a write is not visible immediately to other clients. (Not UFS
semantics.)

Sessions that start later only see writes that have been flushed to the server

 Caching introduces complexity in the consistency semantics of NFS.

○ Caching

- NFS

 Silberschatz 6

□ Sessions that start later only see writes that have been flushed to the server
disk. (Not AFS semantics.)

 Silberschatz 7

