
Important features: files are stored at a lot of sites in a distributed system.○

Service = a software that run on one or more machines.�

Server = a service software that runs on a single machine.�

Client = a process that can invoke a service.�

Vocabs○

Create, delete, read, write�

Via OS system calls.�

DFS Interface: Same as traditional file service.○

As a part of a distributed OS.�

A software layer that connects the traditional OS to the file system software.�

Implementation approach○

DFS should hide the multiplicity and the dispersion of sites and files from the user. Such
as DFS is transparent. A transparent DFS supports user mobility.

○

Measured by the time it takes to service a request.�

Time to deliver request.□

Time for response to come back.□

Time to transfer file content and metadata.□

Time to run the communication protocol.□

This can be affected by:�

How good is a DFS? ○

Distributed File System (DFS) = a file system that allows users to share files and storage
resources in distributed computer system.

-

User should be able to refer to files by names that are easy to understand.○

DFS needs to do name resolution that maps names to blocks on storages of some
machines in the network.

○

Unlike traditional file system, where files are located in one disk of the machine the user
uses, files can have replicas located on many computers. A DFS must map the name to
one of the replicas.

○

Location transparency = the name of the file does not contain any metadata
about the physical storage.

�

Location independence = the name of the file does not need to change if the file
is moved from one physical storage to another.

�

Location independence is stronger than location transparency.�

File name is completely decoupled from its physical storage.□

The system can balance utilization of disks across the system.□

Nice things about location independence:�

Nice properties of naming in a DFS○

host is host name, just like the internet host name.□

local-name is the Unix file name.□

This is not location transparent.□

host:local-name�

Used by Sun's NFS.□

This mounting can be done on demand, providing great flexibility.□

Every machine has its own local mapping of remote files.

Client can mount directories on servers. Then can refer to remote files using the
same naming scheme as local files.

�

Approaches○

Naming-

Chapter 15: Distributed File System
Sunday, February 10, 2008
4:03 PM

 หนา Silberschatz 1

Every machine has its own local mapping of remote files.□

Users can access some files at one workstation, but not at another.�

When a server goes down, random directories on clients become
unusable.

�

This approach is difficult to administer.□

Used by Andrew File System (AFS).□

Users see a single file system that feels like traditional file system on all
machines

□

Difficult to achieve because some Unix files are special such as device files.□

Indirection: A single naming system is responsible for resolving file names.�

Too many files on the system to handle.□

Cannot have a system that keeps track of the mapping of every file.�

Instead, break file systems into component units = groups of files that are always
stored together in one machine.

�

Typically, a component unit is partition along directory boundaries. That is, files in a
directory or subdirectories of that directory are always stored together.

�

The first level maps directory names to an identifier that contains its
corresponding component units. This is often called location-independent
file identifier.

□

The second level maps component units to their physical locations.□

Now, we can implement a two-level system-wide database.�

A part that identifies the component unit.□

A part that identifies a file within the component unit.□

A location-independent file identifier is a structured name. It contains:�

The third approach is the most promising. So we'll discuss its implementation.○

□ A lot of network overhead. Too slow to be usable.

� Remote-service machanism = use RPC to carry out requests such as create(),
delete(), read(), and write()

□ Transfer all or some part of the file to local machine.
□ Transfer the changes back to the location that the file is actually stored.

� Caching

○ Two main approaches

□ The most used one seems to be LRU (least recently used).
� To keep the cache size bounded, there needs to be a replacement policy.

□ AFS uses 64KB blocks. Other systems caches disk blocks (4KB).
□ Increase the size of a cache block increases hit ratio, but incurs a lot of

overhead in transporting the block. Thus, a miss is very expensive.

� Disk block size.
� Network transfer unit = how many bytes are transferred in one packet?

□ Figuring out cache granularity, you need to think of:

� Cache granularity = how large is an element of the cache?

� Disk is non-volatile. So cache survives resets, power outages, and other
failures.

� But it is very slow.

□ Disk

� Fast.
� We have a lot more memory day-by-day.
� Server will caches files in main-memory anyway. So, if we use main

memory, we can use the same code for both client and server.

□ Main-memory

Old versions of NFS does not provide disk cache, but new versions comes with

� Cache location = where to keep the cache?

○ Things to consider about caching.

Remote File Access-

 หนา Silberschatz 2

□ Old versions of NFS does not provide disk cache, but new versions comes with
cachefs that caches files on the disk.

�

□ When and how to update the master copy?
□

� Write data to the master copy as soon as the data is placed on a cache.
� High reliability. When a client crashes, not a lot of data is lost.
� Slow. Use a lot of network bandwidth. Not scalable.

Write-through policy

� Data is written to the cache.
� Update to the master copy is performed later after many writes.Locally

fast.
� A lot less redundant information transfer.
� A lot of unwritten data can be lost when a client crashes.

► Reduce communication between client and server.
► But a block can sit in a cache for a long time without being

flushed to the server.

◊ When a block is about to be flushed from a cache.

◊ A process scans the cache from time to time, and transfer blocks
that have been updated to the server.

◊ This approach is used by Sprite OS.

� A lot of variation: When to update master copy?

□ Delayed-write policy

� Data is updated on the server only when a file is closed.
� If a file is open for a short period, this does not help much.
� But when a file is open for a long time, and written to a lot, this approach

reduces a lot of network traffic.
� Terminating a process can be delayed because the remote file update.

□ Write-on-close policy

� NFS uses delayed-write policy for file content, but uses write-through
policy for file metadata. This prevents directory structure and file name
from being inconsistent.

□ A combination of the above approaches can be used.

Cache-update policies

□ When an update is done to a file, all the caches at various machines in the
system needs to be updated.

□ Keeping caches the same as the master copy is the problem of cache-
consistency.

□ To ensure cache consistency, clients need some way to know if the cached
copy it has is invalid or not.

◊ Performance determined by how often this check is invoked. If
checks too often, the server may become overloaded, and the
network might become full.

◊ Client can check every time it accesses the file. But this is very slow.
◊ Alternatively, it can check for consistency periodically. But this has

greater probability of the client using inconsistent cache.

� Client-initiated = The client asks the server if the master copy has
changed since the last time the client accessed it.

◊ The server can also react to conflicting uses of the file by disable
caching and force the clients to access the file by RPC instead.

� Server-initiated = The server keeps track of which file is cached on
which client. When an update takes place, the server send messages to
clients that cache the file to tell them that the cached copies are invalid.

□ Two approaches:

� Cache-consistency

Caching reduces network use, and thus makes the system more scalable.

○ Caching pros and cons:

 หนา Silberschatz 3

� Caching reduces network use, and thus makes the system more scalable.
� Caching allows the system to be further optimized because it now knows that it only

have to transfer infrequent large chunks of data instead of frequent small responses.
� When writes are frequent, ensuring cache consistency can incurs a lot of overhead.
� Systems that use caching is a lot more complicated than systems that use RPC

because low-level interface is different from high-level interface (OS system calls).

� When a client opens a file, server fetches the file's information to main memory.
� It then gives a client a session of communication.
� Throughout the session, the server responds to client request using the session's

information to help improve performance and network usage.

□ For example, the server can keep the file pointer, and the client just have to
specify how many more bytes it wants to read or write.

� Since the server keeps a lot of information, the communication between client and
server can be reduced.

� The session ends when the client closes the file.
� AFS is a stateful file system.

○ Stateful service

� Every request is self-contained. It contains information about which file and which
bytes of the file the client wants to access.

� The server keeps no information about which client opens which file. It merely serve
those requests as directed.

� NFS is a stateless file system.

○ Stateless service

� A stateful file system is much faster. It has less communication overhead.

□ Consider when the server crashes midway of a session. The information stored
in its main memory is loss. Complicated recovery protocol needs to be followed
so that the file system can be restored to a consistent state.

□ A crashed client can waste the server's main memory. So the server has to
detect sessions that become idle after a long time to potentially reclaim the
main memory. This is called orphan detection and elmination.

� However, stateful file system is less robust.

� A stateless file system does not have to do anything to recover from server or client
crashes.

� However, all operations in a stateless file system has to be idempotent so as to
allow client to retry a request many times if it doesn't get response from the server.
This can complicates the design of the file system somewhat.

○ Comparisons

- Managing server-side information.

○ A file may be replicated on many different machines.

� Fault tolerance: If a site that contains the file crashes, the file is still available on
other sites.

� Performance: A client can choose from the servers that gives the best performance.

○ Benefits

○ Needs to make sure that replicas are located on machines which are failure
independent, in other words, machines that do not share fate with one another: if one
machine fails, other machines do not fail together.

� It must map the file name to one replica.
� When an update is done to a replica, it must also be done to all replica.

○ The file system needs to ensure that replication is transparent from the user.

� We can achieve a lot of consistency by a lot of validity checking, but this incurs a lot
of network overhead.

○ Replica consistency is quite the same as cache consistency.

- Replication

 หนา Silberschatz 4

of network overhead.
� We can sacrifice consistency or availability for performance.

○ Developed at Carnegie Mellon University.

○ Now an open source software. Available at http://www.openafs.org.

○ AFS provides a global file system that is the same when viewed from all machines in the
system. This file system can be mounted to a local directory. For example, a user's home
directory may be mapped to AFS. So the user can access his file from any workstation in
the system.

� Location independent file names.
� Client-side caching.
� Secure authentication and data transmission.
� Protection: Each file has its own access control list.
� Clear interface allows machines with different hardware configurations to use the

system.
� Very scalable: 1000+ nodes of workstation.

○ Features

� Servers are dedicated files servers. Runs software called Vice.
� Clients are workstation that users work on. Runs software called Venus that

communicates with the servers via Virtue protocol.

○ AFS classify machines into two types: clients and servers.

� Machines in a cluster are connected by LAN.
� A cluster has one dedicated server. Most clients in the cluster should use the service

on the cluster's servers.
� Clusters are connected to one another by WAN.

○ Clients are servers are grouped into clusters.

○ In order to reduce load on the server, clients cache data in units of 64KB.

� Files in a volume are always stored together.
� Can be thought of a disk partition. But is quite different.
� A volume is stored as a whole in a disk partition. May volumes can reside in the

same disk partition.
� Has an array that contains inode numbers of the files in a volume.
� Most of the time, a volume is associated with files of a single user or a single

directory.

○ Files in the systems are partition into component units called volumes.

� A volume number.
� A vnode = an index into an array that contains inodes of files.
� A uniquifier = a number that allows the same vnode to be used several times. It is

useful when, for example, making direct links.

○ In order to support location independence, a file name is resolved to a low-level identifier
called fid. A fid has three components:

○ Location of a volume is kept in a system-wide volume-location database.

� The old location is left with a forwarding information. Any requests to any file in the
volume is carried out locally and forwarded to the new location. In this way, the
volume-location database can be updated some time after the move took place.

� Once the volume has finished moving. It is temporarily disabled so that recent
updates to files can be carried out. After that, the volume is available from the new
location.

� Volume moving is atomic. So it recovers graciously from server crashes.

○ When a volume is moved to a new location:

○ Venus is a user-level process that runs on each client and does the caching of file content
from the server. Each system call that involves files on AFS are forwarded by the kernel to
Venus.
Venus caches the file to disk as it is opened, and updates the copy only when the file is

- Case study: Andrew File System

 หนา Silberschatz 5

� An update may not be visible elsewhere immediately.
� After Venus has transferred the file content to the local disk, read/write to the file

are performed by the local file system.
� A cache is just a local directory on the workstation. Files in this directories are just

placeholders for cached entries.
� The local file system maintains a buffer cache orthogonal to Venus.
� Venus manages both file data cache (on disk) and metadata cache (in main

memory). The metadata cache allows software to query information such as file
name or size rapidly.

○ Venus caches the file to disk as it is opened, and updates the copy only when the file is
closed.

� AFS uses server-initiated approach to deal with cache consistency.
� When a client caches a file, we say that the client has a callback to the file.
� A client can only update a file when it has a callback to the file.
� When a system updates the file, the server is informed so, and the server remove

callbacks from other clients by sending messages to tell them. After that, the server
does not allow other clients to modify the file until it has recached the file again.

� This mechanism requires the server to maintain callback information for each of
client-file access. If it runs out of space, it may revoke callbacks from some clients.

○ Callback mechanism

� When a client is rebooted, it sends cache validation requests to server for all the files
in its cache.

○ There is another set of cache validation:

� Names in AFS are just like regular unix names.
� Venus does name resolution component-by-component. It resolves one directory in

the path name at a time. Note that a directory in AFS is a file that contains mappings
mappings between names and fids.

� Venus asks the volume-location database for location of the server a volume resides
in.

○ Name resolution

� Implemented as a user process running on the server machine.
� The process has many threads scheduled using non-preemptive scheduling.
� These threads form a thread pool and are used to service user requests.
� Using thread pools allow threads to use a common cache of file content.
� However, the threads share fate. One thread's failure can result in the whole server

going down.

○ Server

 หนา Silberschatz 6

