
Threads

Shamelessly taken from 

6.033 Lecture Note Chapter 5.B & C



Virtual Memory

• Harden modularity by disallowing modules to 

read/write memory of other modules.

• Not a complete solution for modularity by 

itself.itself.

– Only memory abstraction.

• Still need to deal with:

– Virtual interpreter

– Virtual communication channel



Virtual Processor

• Virtual interpreter abstraction.

• Problem: One processor, but many modules.

• Goal: Give each module a virtual processor, 

that it can think of as its own.that it can think of as its own.

– Programmer doesn’t have to think about other 

programs that are running.

– If a module screw ups, it only affects its own 

virtual processor. Not other modules.



Threads

• A thread is a module in execution.

• A thread is an abstraction that has enough 

information about the state of a module so 

that you can stop it, and later resume it.that you can stop it, and later resume it.

• From the thread’s point of view, it continues 

doing its job, unaware of how many times it 

has been stopped or resumed.



Virtual Processors with Threads

• Associating one thread with one module.

• The module now has the illusion that it has 

the processor to itself.

• To share processors among modules, we have • To share processors among modules, we have 

to switch between modules.

• This is simple. We just stop a module’s thread, 

and resume another module’s thread.



What info to include in a thread?

• The program counter.

• Values of the registers.

– Stack Point (SP)

– PMAR– PMAR

– Other registers used for calculations.

• Other information is available in the module’s 

virtual memory. So, we just ignore it.



When to switch thread?

• Most modules spend most of their time 
waiting for some conditions to be true.

• For example, an editor can be waiting for 
keyboard inputs.keyboard inputs.

• While waiting, a module does not do any 
useful work.

• When a module starts waiting, switch the 
thread so that other modules can use the 
processor.



Example

• Editor thread

WAIT_LOOP:

if (input_count <= processed count)

goto WAIT_LOOP;goto WAIT_LOOP;

• Keyboard manager thread

input_count++;



Example (cont.)

• The loop the editor is doing is called a spin 

loop.

– It repeatedly checks a condition until the 

condition is true.condition is true.

• input_count is the number of characters read 

by the keyboard.

• processed_count is the number of characters 

the editor has processed.



Example (cont.)

• When the keyboard manager receives a 

character from the keyboard, it increases 

input_count by one.

• The editor thread checks if there is a new • The editor thread checks if there is a new 

character to process by checking if 

input_count > processed_count.

• Once the editor thread consumes a character, 

it increases processed_count by one.



Example (cont.)

• The editor thread should release its control of 

the processor once it enters WAIT_LOOP.

• WAIT_LOOP:• WAIT_LOOP:

while (input_count <= processed_count)

YIELD();



YIELD System Call

• Enters a part of the kernel called the thread 

manager.

• The thread manager chooses a thread to give 

the processor to, and changes the thread.the processor to, and changes the thread.



YIELD System Call (cont.)

procedure YIELD() {

save this thread’s state;

schedule another thread to run;

dispatch processor to that thread;dispatch processor to that thread;

}



YIELD System Call (cont.)

• So, in the thread that is going to be scheduled, 

where does the execution resumes?

• At anywhere the state was saved:

– The next instruction after the YIELD() system call – The next instruction after the YIELD() system call 

in the thread that used YIELD().

– Anywhere for any other threads.



Layering Thread Managers

• There can be multiple layers of thread 

managers.

• The processor is a thread manager with two 

threads.threads.

– Main thread used for computation.

– Interrupt thread for handling interrupt.

– Switching thread is done when an interrupt is 

fired. State savings is done by hardware.



Layering Thread Managers (cont.)

• The main thread then contains another thread 

manager = the kernel.

– Threads = operating system processes.

– Allow processes to share the processors by – Allow processes to share the processors by 

periodically switching between them.

– Use timer interrupt to signal thread switching.

– We already talked about this. ☺



Layering Thread Managers (cont.)

• Each OS process may implement its own 

thread manager.

• And so on…



Layering Thread Managers (cont.)

OS processes

application threads

editor window service file service

disk network client

hardware

kernel

processor

main interrupt



Threads and Address Spaces

• Threads and address spaces are independent.

• Two or more threads can share an address space.

– The kernel address space is shared by two threads.

• The main kernel thread.• The main kernel thread.

• The interrupt thread.

– Some user modules might have multiple threads using 

one shared address space.

– If two threads have the same PMAR, then they use the 

samse address space.



Threads and Address Spaces (cont.)

• A thread may use more than one address 

space.

– The main thread of the processor switches 

between multiple address spaces.between multiple address spaces.



Process

• Process = a thread that owns its address 

space.

• A process can implement a thread manager, 

and can have multiple threads inside it.and can have multiple threads inside it.

• Most of the time, a process has only a single 

thread.

– Such processes are simple, and so are common.



Process (cont.)

• A process may implement multiple threads to 

increase efficiency:

– One thread may be busy waiting for input.

– Other threads may compute.– Other threads may compute.

• Implications of multiple threads in a process.

– Don’t have to worry about switching address space. 

Every threads share the same address space.

– But threads share fate. If one thread screws up, the 

other may as well be gone together.



Implementing a Thread Manager



Switching Threads

• Let’s return to the busy waiting loop.

1 If (input_count <= processed_count) JMP 4

2 YIELD()2 YIELD()

3 JMP 1

4 …



Switching Threads (cont.)

• When the above code calls YIELD(), the stack 

looks like this:

112 saved arguments, 

104

100

108

112

3

SP

saved arguments, 

previous return 

addresses, etc



Switching Threads (cont.)

• We need to:

– Save the stack pointer of the current thread.

– Select a new thread to run.

– Load the stack pointer of the new thread, and resume.

• So, let’s say we have an array:• So, let’s say we have an array:

int threadtable[7];

that store the stack pointers.

• A global variable “me” that olds the index of the 
current thread.



Switching Threads (cont.)

• Then, YIELD() may be implemented like this:

procedure YIELD() {

threadtable[me] = SP;threadtable[me] = SP;

me = (me + 1) % 7;

SP = threadtable[me];

}



Managing Threads

• We still need some way to:

– Create new threads

– Destroy threads

• Once they have finished running• Once they have finished running

• When some other threads requested them to be 

destroyed.

– Manage variable number of threads.



Managing Threads (cont.)

• New calls of thread managers.

– CREATE_THREAD(address)

• address = where the thread must start execution.

– EXIT_THREAD()– EXIT_THREAD()

• When a thread calls this function, it is terminated, 

cleanly.

– DESTROY_THREAD(id)

• Destroy the thread identified by id.



Managing Threads (cont.)

• threadtable needs some enhancement

– Whether an entry is used or not.

– The pointer to the chunk of memory holding the 

stack.stack.

• Let’s assume for the moment that we allocate 

each thread an area of 4096 byte as a stack.



Managing Threads (cont.)

struct threadentry {

bool used;

int *stack;

int stacktop;int stacktop;

} threadtable[7];



Managing Threads

• What does CREATE_THREAD needs to do?

– Allocate the new stack.

– Place the address of EXIT_THREAD on the stack.

– Place the address given as argument on the stack.– Place the address given as argument on the stack.



Managing Threads (cont.)

procedure CREATE_THREAD(address) {

k = FIND_UNUSED_ENTRY(threadtable)

threadtable[k].used = true;

threadtable[k].stack = ALLOC(4096);threadtable[k].stack = ALLOC(4096);

threadtable[k].stack[1023] = EXIT_THREAD;

threadtable[k].stack[1022] = address;

threadtable[k].stacktop = stack + 1021;

}



Managing Threads (cont.)

• YIELD also needs to be changed, slightly.

procedure YIELD() {

threadtable[me].stacktop = SP;threadtable[me].stacktop = SP;

me = FIND_NEXT_USED_ENTRY(me);

SP = threadtable[me].stacktop;

}



Managing Threads (cont.)

• FIND_NEXT_USED_ENTRY(me) returns the next 
entry after me in threadtable that is used. That is, 
threadtable[k].used = true.

procedure FIND_NEXT_USED_ENTRY(x) {procedure FIND_NEXT_USED_ENTRY(x) {

do {

x = (x + 1) % 7;

} while (threadtable[x].used = false);

return x;

}



Managing Threads (cont.)

• EXIT_THREAD() have to

– Deallocate the stack of the current thread.

– Free the threadtable cell by setting its status to 

“unused.”“unused.”

– Find the next thread to run.



Managing Threads (cont.)

procedure EXIT_THREAD() {

threadtable[me].used = false;

DEALLOC(threadtable[me].stack);

me = FIND_NEXT_USED_ENTRY(me);me = FIND_NEXT_USED_ENTRY(me);

SP = threadtable[me].stacktop;

}



Managing Threads (cont.)

• DESTROY_THREAD is pretty much the same as 

EXIT_THREAD.

• Though we need to check whether the current 

thread wants to destroy itself or not.thread wants to destroy itself or not.



Managing Threads (cont.)

procedure DESTROY_THREAD(id) {

if (id == me)
EXIT_THREAD();

else {else {

threadtable[id].used = false;

DEALLOC(threadtable[id].stack);

}

}



Sequence Coordination

• Polling = when a thread repeatedly checks a 
condition until it becomes true.

• Normally, it checks for a value of a shared 
variable.

Polling is bad because the time a thread uses to • Polling is bad because the time a thread uses to 
poll something can be given to other threads that 
do computation.

• We want our thread manager to schedule threads 
so that those that do computation get the time it 
needs.



Sequence Coordination (cont.)

• Here’s what we do:

– Have each thread tell the thread manager that it is 

waiting for something to be true.

– Once the thread declares that, it is put in – Once the thread declares that, it is put in 

“WAITING” state, and its execution is suspended.

– Other threads that update something that affects 

the condition can “notify” the thread manager. 

The thread manager can then check which other 

threads it can “wake up.”



Sequence Coordination (cont.)

• For illustration purpose, we’ll use the 

following two primitives:

– WAIT(eventcount)

• When a thread calls this, it tells the thread manager • When a thread calls this, it tells the thread manager 

that it is waiting for the event that eventcount changes.

– NOTIFY(eventcount)

• When a thread calls this, it tells the thread manager 

that the value of eventcount has changed.



Sequence Coordination (cont.)

• Note that these primitives are just some way 
of achieving sequence coordination.

• Real systems have difference primitives.

– In Linux, a process can wait() for another process – In Linux, a process can wait() for another process 
to change state.

– Java threads has wait() and notify() as well, but 
not as specific as ours.

– We’re not dealing with semaphores, locks, and 
things like that yet. We’re not talking about 
sharing resources here.



Sequence Coordination (cont.)

• With the primitives in place, the editor’s busy 

wait loop can become:

Editor threadEditor thread

while (*input_count <= processed_count)

WAIT(input_count);



Sequence Coordination (cont.)

• The keyboard thread becomes:

Keyboard manager thread

(*input_count)++;(*input_count)++;

NOTIFY(input_count);



Sequence Coordination (cont.)

• With waiting, a thread can have three states.

– WAITING = it is waiting for something.

– RUNNABLE = the thread manager can schedule it 
to run, but is not running now.

– RUNNING = it is currenly running.

• However, when implementing the thread 
manager, there’s no need to distinguish 
between RUNNABLE and RUNNING.



Sequence Coordination (cont.)

• Augmenting threadtable (again)
– A threadtable entry may have one of the three states: UNUSED, 

WAITING, RUNNABLE.

– Store the pointer to the eventcount that the thread is waiting.

struct threadentry {struct threadentry {

int state;

int *stack;

int *eventcount;

int stacktop;

} threadtable[7];



Sequence Coordination (cont.)

• We’ll change YIELD() so that we separate 
scheduling mechanism (how to switch to a new 
thread) from scheduling policy (how to select a 
new thread).

procedure YIELD() {

threadtable[me].stacktop = SP;

RUNNEXT();

}



Sequence Coordination (cont.)

procedure RUNNEXT() {

SCHEDULER(); // picks a new thread

DISPATCH(); // switch to the thread

}}



Sequence Coordination (cont.)

procedure SCHEDULER() {

me = FIND_NEXT_RUNNABLE(me);

}

procedure FIND_NEXT_RUNNABLE(x) {procedure FIND_NEXT_RUNNABLE(x) {

do {

x = (x + 1) % 7;

} while (threadtable[x].state != RUNNABLE);

return x;

}



Sequence Coordination (cont.)

procedure DISPATCH() {

SP = threadtable[me].stacktop;

}



Sequence Coordination (cont.)

• WAIT 

– Sets a thread’s state to WAITING.

– Tests the eventcount again and reset the thread’s 

state if the test succeeds.state if the test succeeds.

– Call the scheduler.



Sequence Coordination (cont.)

procedure WAIT(eventcount, value) {

threadtable[me].eventcount = eventcount;

threadtable[me].state = WAITING;

RUNNEXT();RUNNEXT();

}



Sequence Coordination (cont.)

• NOFITY loops over all threads, and wake up 

threads that have the eventcount as the given 

one.



Sequence Coordination (cont.)

procedure NOTIFY(eventcount) {

for(i=0;i<7;i++) {

if (threadtable[i].state == WAITING) &&

(threadtable[i].eventcount == eventcount)(threadtable[i].eventcount == eventcount)

threadtable[i].state = RUNNABLE;

}

}



Things to be careful about…

• The code we have seen so far only works 
when there is one processor.

– We have only one “me,” but each processor has to 
have its own “me.”

Two processors cannot run the same thread at the – Two processors cannot run the same thread at the 
same time. So, we have to make sure that they 
have different “me.”

– What if a thread call DESTROY_THREAD, while the 
thread being destroyed is being run by another 
processor?



Things to be careful about… (cont.)

• Shoving the “me” issue aside, we still have 

more problems with WAIT and NOTIFY in 

multi-processor setting.

• An event may be lost if one thread calls • An event may be lost if one thread calls 

NOTIFY while the other thread is calling WAIT.

• See an example next page.

• We’ll deal with synchronization and all that 

jazz after the midterm.



Things to be careful about… (cont.)

Thread 1 (in NOTIFY)

if (threadtable[0].status  == WAITING) &&

Thread 0 (in WAIT)

threadtable[me].eventcount = 

eventcount;

if (threadtable[0].status  == WAITING) &&

(threadtable[0].eventcount == eventcount)

threadtable[0].state = RUNNABLE;

if (threadtable[1].status  == WAITING) &&

(threadtable[1].eventcount == eventcount)

threadtable[1].state = RUNNABLE;

threadtable[me].state = WAITING;

RUNNEXT();



Types Scheduling

• So far, thread switching only happens when a 

thread calls YIELD or WAIT.

• This is called nonpreemptive scheduling: a 

thread releases a processor when it wants to.thread releases a processor when it wants to.

• Nonpreemptive scheduling is bad because if a 

thread does not release a processor, then all 

other threads will not have a chance to run.



Types of Scheduling (cont.)

• Some systems use cooperative multitasking: it 

requires each thread to call YIELD from time to 

time.

• This is not good because it is only a • This is not good because it is only a 

convention.

• If a thread does not call YIELD then other 

threads are screwed.



Types of Scheduling (cont.)

• To enforce modularity, we need preemptive 

scheduling: the thread manager forces 

threads to give up the processor after it has 

run for a while, say 100 milliseconds.run for a while, say 100 milliseconds.

• In this way, a thread that does not give up the 

processor cannot stop other threads from 

progressing.



Preemptive Scheduling

• Implementing preemptive scheduling is quite 

complex.

• There needs to be an external mechanism that 

signals the thread manager to do its job.signals the thread manager to do its job.

– Typically, a clock device firing interrupt every 

100ms is used.



Preemptive Scheduling (cont.)

• The interrupt can occur anywhere, not at 
predefined location like the call to YIELD() in 
nonpreemptive scheduling.

• Therefore, we need to store more states per 
thread:thread:

– The values of EVERY register. (Not just the stack 
pointer as in nonpreemptive scheduling.)

– The instruction pointer (so that we can return later.)

• Saving states and things like this must be done 
with the help of hardware.



Preemptive Scheduling (cont.)

• Things get more complicated because only the 

kernel can handle interrupts.

• How can we implement preemptive 

scheduling in user processes?scheduling in user processes?

– Well, with some help from the OS, of course.

– More on this after the midterm.


