
12/18/2007

1

Threads

Shamelessly taken from 

6.033 Lecture Note Chapter 5.B & C

Virtual Memory

• Harden modularity by disallowing modules to 

read/write memory of other modules.

• Not a complete solution for modularity by 

itself.

– Only memory abstraction.

• Still need to deal with:

– Virtual interpreter

– Virtual communication channel

Virtual Processor

• Virtual interpreter abstraction.

• Problem: One processor, but many modules.

• Goal: Give each module a virtual processor, 

that it can think of as its own.

– Programmer doesn’t have to think about other 

programs that are running.

– If a module screw ups, it only affects its own 

virtual processor. Not other modules.

Threads

• A thread is a module in execution.

• A thread is an abstraction that has enough 

information about the state of a module so 

that you can stop it, and later resume it.

• From the thread’s point of view, it continues 

doing its job, unaware of how many times it 

has been stopped or resumed.

Virtual Processors with Threads

• Associating one thread with one module.

• The module now has the illusion that it has 

the processor to itself.

• To share processors among modules, we have 

to switch between modules.

• This is simple. We just stop a module’s thread, 

and resume another module’s thread.

What info to include in a thread?

• The program counter.

• Values of the registers.

– Stack Point (SP)

– PMAR

– Other registers used for calculations.

• Other information is available in the module’s 

virtual memory. So, we just ignore it.
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When to switch thread?

• Most modules spend most of their time 
waiting for some conditions to be true.

• For example, an editor can be waiting for 
keyboard inputs.

• While waiting, a module does not do any 
useful work.

• When a module starts waiting, switch the 
thread so that other modules can use the 
processor.

Example

• Editor thread

WAIT_LOOP:

if (input_count <= processed count)

goto WAIT_LOOP;

• Keyboard manager thread

input_count++;

Example (cont.)

• The loop the editor is doing is called a spin 

loop.

– It repeatedly checks a condition until the 

condition is true.

• input_count is the number of characters read 

by the keyboard.

• processed_count is the number of characters 

the editor has processed.

Example (cont.)

• When the keyboard manager receives a 

character from the keyboard, it increases 

input_count by one.

• The editor thread checks if there is a new 

character to process by checking if 

input_count > processed_count.

• Once the editor thread consumes a character, 

it increases processed_count by one.

Example (cont.)

• The editor thread should release its control of 

the processor once it enters WAIT_LOOP.

• WAIT_LOOP:

while (input_count <= processed_count)

YIELD();

YIELD System Call

• Enters a part of the kernel called the thread 

manager.

• The thread manager chooses a thread to give 

the processor to, and changes the thread.
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YIELD System Call (cont.)

procedure YIELD() {

save this thread’s state;

schedule another thread to run;

dispatch processor to that thread;

}

YIELD System Call (cont.)

• So, in the thread that is going to be scheduled, 

where does the execution resumes?

• At anywhere the state was saved:

– The next instruction after the YIELD() system call 

in the thread that used YIELD().

– Anywhere for any other threads.

Layering Thread Managers

• There can be multiple layers of thread 

managers.

• The processor is a thread manager with two 

threads.

–Main thread used for computation.

– Interrupt thread for handling interrupt.

– Switching thread is done when an interrupt is 

fired. State savings is done by hardware.

Layering Thread Managers (cont.)

• The main thread then contains another thread 

manager = the kernel.

– Threads = operating system processes.

– Allow processes to share the processors by 

periodically switching between them.

– Use timer interrupt to signal thread switching.

–We already talked about this. ☺

Layering Thread Managers (cont.)

• Each OS process may implement its own 

thread manager.

• And so on…

Layering Thread Managers (cont.)

hardware

kernel

OS processes

application threads

processor

main interrupt

editor window service file service

disk network client
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Threads and Address Spaces

• Threads and address spaces are independent.

• Two or more threads can share an address space.

– The kernel address space is shared by two threads.

• The main kernel thread.

• The interrupt thread.

– Some user modules might have multiple threads using 

one shared address space.

– If two threads have the same PMAR, then they use the 

samse address space.

Threads and Address Spaces (cont.)

• A thread may use more than one address 

space.

– The main thread of the processor switches 

between multiple address spaces.

Process

• Process = a thread that owns its address 

space.

• A process can implement a thread manager, 

and can have multiple threads inside it.

• Most of the time, a process has only a single 

thread.

– Such processes are simple, and so are common.

Process (cont.)

• A process may implement multiple threads to 

increase efficiency:

– One thread may be busy waiting for input.

– Other threads may compute.

• Implications of multiple threads in a process.

– Don’t have to worry about switching address space. 

Every threads share the same address space.

– But threads share fate. If one thread screws up, the 

other may as well be gone together.

Implementing a Thread Manager

Switching Threads

• Let’s return to the busy waiting loop.

1 If (input_count <= processed_count) JMP 4

2 YIELD()

3 JMP 1

4 …
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Switching Threads (cont.)

• When the above code calls YIELD(), the stack 

looks like this:

104

100

108

112

3

SP

saved arguments, 

previous return 

addresses, etc

Switching Threads (cont.)

• We need to:

– Save the stack pointer of the current thread.

– Select a new thread to run.

– Load the stack pointer of the new thread, and resume.

• So, let’s say we have an array:

int threadtable[7];

that store the stack pointers.

• A global variable “me” that olds the index of the 
current thread.

Switching Threads (cont.)

• Then, YIELD() may be implemented like this:

procedure YIELD() {

threadtable[me] = SP;

me = (me + 1) % 7;

SP = threadtable[me];

}

Managing Threads

• We still need some way to:

– Create new threads

– Destroy threads

• Once they have finished running

• When some other threads requested them to be 

destroyed.

–Manage variable number of threads.

Managing Threads (cont.)

• New calls of thread managers.

– CREATE_THREAD(address)

• address = where the thread must start execution.

– EXIT_THREAD()

• When a thread calls this function, it is terminated, 

cleanly.

– DESTROY_THREAD(id)

• Destroy the thread identified by id.

Managing Threads (cont.)

• threadtable needs some enhancement

–Whether an entry is used or not.

– The pointer to the chunk of memory holding the 

stack.

• Let’s assume for the moment that we allocate 

each thread an area of 4096 byte as a stack.
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Managing Threads (cont.)

struct threadentry {

bool used;

int *stack;

int stacktop;

} threadtable[7];

Managing Threads

• What does CREATE_THREAD needs to do?

– Allocate the new stack.

– Place the address of EXIT_THREAD on the stack.

– Place the address given as argument on the stack.

Managing Threads (cont.)

procedure CREATE_THREAD(address) {

k = FIND_UNUSED_ENTRY(threadtable)

threadtable[k].used = true;

threadtable[k].stack = ALLOC(4096);

threadtable[k].stack[1023] = EXIT_THREAD;

threadtable[k].stack[1022] = address;

threadtable[k].stacktop = stack + 1021;

}

Managing Threads (cont.)

• YIELD also needs to be changed, slightly.

procedure YIELD() {

threadtable[me].stacktop = SP;

me = FIND_NEXT_USED_ENTRY(me);

SP = threadtable[me].stacktop;

}

Managing Threads (cont.)

• FIND_NEXT_USED_ENTRY(me) returns the next 
entry after me in threadtable that is used. That is, 
threadtable[k].used = true.

procedure FIND_NEXT_USED_ENTRY(x) {

do {

x = (x + 1) % 7;

} while (threadtable[x].used = false);

return x;

}

Managing Threads (cont.)

• EXIT_THREAD() have to

– Deallocate the stack of the current thread.

– Free the threadtable cell by setting its status to 

“unused.”

– Find the next thread to run.
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Managing Threads (cont.)

procedure EXIT_THREAD() {

threadtable[me].used = false;

DEALLOC(threadtable[me].stack);

me = FIND_NEXT_USED_ENTRY(me);

SP = threadtable[me].stacktop;

}

Managing Threads (cont.)

• DESTROY_THREAD is pretty much the same as 

EXIT_THREAD.

• Though we need to check whether the current 

thread wants to destroy itself or not.

Managing Threads (cont.)

procedure DESTROY_THREAD(id) {

if (id == me)
EXIT_THREAD();

else {

threadtable[id].used = false;

DEALLOC(threadtable[id].stack);

}

}

Sequence Coordination

• Polling = when a thread repeatedly checks a 
condition until it becomes true.

• Normally, it checks for a value of a shared 
variable.

• Polling is bad because the time a thread uses to 
poll something can be given to other threads that 
do computation.

• We want our thread manager to schedule threads 
so that those that do computation get the time it 
needs.

Sequence Coordination (cont.)

• Here’s what we do:

– Have each thread tell the thread manager that it is 

waiting for something to be true.

– Once the thread declares that, it is put in 

“WAITING” state, and its execution is suspended.

– Other threads that update something that affects 

the condition can “notify” the thread manager. 

The thread manager can then check which other 

threads it can “wake up.”

Sequence Coordination (cont.)

• For illustration purpose, we’ll use the 

following two primitives:

–WAIT(eventcount)

• When a thread calls this, it tells the thread manager 

that it is waiting for the event that eventcount changes.

– NOTIFY(eventcount)

• When a thread calls this, it tells the thread manager 

that the value of eventcount has changed.
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Sequence Coordination (cont.)

• Note that these primitives are just some way 
of achieving sequence coordination.

• Real systems have difference primitives.

– In Linux, a process can wait() for another process 
to change state.

– Java threads has wait() and notify() as well, but 
not as specific as ours.

–We’re not dealing with semaphores, locks, and 
things like that yet. We’re not talking about 
sharing resources here.

Sequence Coordination (cont.)

• With the primitives in place, the editor’s busy 

wait loop can become:

Editor thread

while (*input_count <= processed_count)

WAIT(input_count);

Sequence Coordination (cont.)

• The keyboard thread becomes:

Keyboard manager thread

(*input_count)++;

NOTIFY(input_count);

Sequence Coordination (cont.)

• With waiting, a thread can have three states.

–WAITING = it is waiting for something.

– RUNNABLE = the thread manager can schedule it 
to run, but is not running now.

– RUNNING = it is currenly running.

• However, when implementing the thread 
manager, there’s no need to distinguish 
between RUNNABLE and RUNNING.

Sequence Coordination (cont.)

• Augmenting threadtable (again)
– A threadtable entry may have one of the three states: UNUSED, 

WAITING, RUNNABLE.

– Store the pointer to the eventcount that the thread is waiting.

struct threadentry {

int state;

int *stack;

int *eventcount;

int stacktop;

} threadtable[7];

Sequence Coordination (cont.)

• We’ll change YIELD() so that we separate 
scheduling mechanism (how to switch to a new 
thread) from scheduling policy (how to select a 
new thread).

procedure YIELD() {

threadtable[me].stacktop = SP;

RUNNEXT();

}
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Sequence Coordination (cont.)

procedure RUNNEXT() {

SCHEDULER(); // picks a new thread

DISPATCH(); // switch to the thread

}

Sequence Coordination (cont.)

procedure SCHEDULER() {

me = FIND_NEXT_RUNNABLE(me);

}

procedure FIND_NEXT_RUNNABLE(x) {

do {

x = (x + 1) % 7;

} while (threadtable[x].state != RUNNABLE);

return x;

}

Sequence Coordination (cont.)

procedure DISPATCH() {

SP = threadtable[me].stacktop;

}

Sequence Coordination (cont.)

• WAIT 

– Sets a thread’s state to WAITING.

– Tests the eventcount again and reset the thread’s 

state if the test succeeds.

– Call the scheduler.

Sequence Coordination (cont.)

procedure WAIT(eventcount, value) {

threadtable[me].eventcount = eventcount;

threadtable[me].state = WAITING;

RUNNEXT();

}

Sequence Coordination (cont.)

• NOFITY loops over all threads, and wake up 

threads that have the eventcount as the given 

one.
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Sequence Coordination (cont.)

procedure NOTIFY(eventcount) {

for(i=0;i<7;i++) {

if (threadtable[i].state == WAITING) &&

(threadtable[i].eventcount == eventcount)

threadtable[i].state = RUNNABLE;

}

}

Things to be careful about…

• The code we have seen so far only works 
when there is one processor.

–We have only one “me,” but each processor has to 
have its own “me.”

– Two processors cannot run the same thread at the 
same time. So, we have to make sure that they 
have different “me.”

–What if a thread call DESTROY_THREAD, while the 
thread being destroyed is being run by another 
processor?

Things to be careful about… (cont.)

• Shoving the “me” issue aside, we still have 

more problems with WAIT and NOTIFY in 

multi-processor setting.

• An event may be lost if one thread calls 

NOTIFY while the other thread is calling WAIT.

• See an example next page.

• We’ll deal with synchronization and all that 

jazz after the midterm.

Things to be careful about… (cont.)

Thread 1 (in NOTIFY)

if (threadtable[0].status  == WAITING) &&

(threadtable[0].eventcount == eventcount)

threadtable[0].state = RUNNABLE;

if (threadtable[1].status  == WAITING) &&

(threadtable[1].eventcount == eventcount)

threadtable[1].state = RUNNABLE;

Thread 0 (in WAIT)

threadtable[me].eventcount = 

eventcount;

threadtable[me].state = WAITING;

RUNNEXT();

Types Scheduling

• So far, thread switching only happens when a 

thread calls YIELD or WAIT.

• This is called nonpreemptive scheduling: a 

thread releases a processor when it wants to.

• Nonpreemptive scheduling is bad because if a 

thread does not release a processor, then all 

other threads will not have a chance to run.

Types of Scheduling (cont.)

• Some systems use cooperative multitasking: it 

requires each thread to call YIELD from time to 

time.

• This is not good because it is only a 

convention.

• If a thread does not call YIELD then other 

threads are screwed.
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Types of Scheduling (cont.)

• To enforce modularity, we need preemptive 

scheduling: the thread manager forces 

threads to give up the processor after it has 

run for a while, say 100 milliseconds.

• In this way, a thread that does not give up the 

processor cannot stop other threads from 

progressing.

Preemptive Scheduling

• Implementing preemptive scheduling is quite 

complex.

• There needs to be an external mechanism that 

signals the thread manager to do its job.

– Typically, a clock device firing interrupt every 

100ms is used.

Preemptive Scheduling (cont.)

• The interrupt can occur anywhere, not at 
predefined location like the call to YIELD() in 
nonpreemptive scheduling.

• Therefore, we need to store more states per 
thread:

– The values of EVERY register. (Not just the stack 
pointer as in nonpreemptive scheduling.)

– The instruction pointer (so that we can return later.)

• Saving states and things like this must be done 
with the help of hardware.

Preemptive Scheduling (cont.)

• Things get more complicated because only the 

kernel can handle interrupts.

• How can we implement preemptive 

scheduling in user processes?

–Well, with some help from the OS, of course.

–More on this after the midterm.


