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Client/Server Architecture

• Limit interactions between modules to 

messages.

• Good for:

– Modularity– Modularity

– Fault tolerance

– Security and Protection

Client/Server Architecture (cont.)

• New design opportunities:

– Multiple clients, multiple servers

– Buffered communication

– Sharing resources with people you do not trust.– Sharing resources with people you do not trust.

Client/Server’s Big Problem

• Each module has to be in one computer.

• This is very costly and unreasonable.

• Need to pack several modules into one 
computer.computer.

Virtualization

• Fool each module that its own computer.

• Three abstractions needed to be virtualized:

– Virtual processor

– Virtual memory– Virtual memory

– Virtual communication channel

• All of this are handled by the OS.

Virtual Memory



Memory Abstraction

• Two Operations:

– READ(address)

– STORE(address, value)

• In systems nowadays:• In systems nowadays:

– Addresses are 32-bit or 64-bit numbers.

– Each address refers to a byte.

• So, memory can be viewed as a 232 or 264

contiguous array of bytes.

Why Virtual Memory?

• Without it, modules read and write directly to 

physical memory.

• A module might STORE invalid data on top of 

other modules’ data.other modules’ data.

• A module might jump into the code of other 

modules.

• The system is more likely to break if one 
module screws up.

Virtual Memory

• Fool every module that it has memory address 

0 to 232 for its own exclusive use.

• A module can only read/write from/to its own 

virtual memory.virtual memory.

• A module can only jump to instructions in its 

own virtual memory.

Virtual Memory (cont.)

• In effect, it is a layer of indirection over 
physical memory.

• A module uses virtual addresses to interface 
with memory.with memory.

• The system translates these virtual addresses 
to physical addresses, which is used to 
interface with the memory hardware.

• The translation process is done by the virtual 
memory manager.

Translation

• This virtual address maps to which physical 

address?

• Dumb approach

– Keep a table that maps each virtual address to the – Keep a table that maps each virtual address to the 

corresponding physical address.

– Doesn’t work because of the heavy memory 

requirement.

• A better approach: Page Maps

Page Maps

• Partition virtual memory into contiguous 

ranges called page.

– Every page has the same size.

– Typically, 4096 bytes.

– 12 bits to address a byte in a page.

• A virtual address has two components:

– A page number (20 bits in 32-bit system)

– An offset into the page (12 bits)

page number (20 bits) offset (12 bits)



Page Maps (cont.)

• Physical memory is also partitioned into 

contiguous chucks of bytes called blocks.

• A block has the same size as that of a page.

• So, a physical address can be thought of as • So, a physical address can be thought of as 

composing of two components:

– A block number

– An offset into bytes of the block

block number (20 bits) offset (12 bits)

Page Maps (cont.)

• The virtual memory manager maps virtual 
page numbers to physical page number.

• Address translation process:

– Translates page number to block number.– Translates page number to block number.

– Concatenating block number with offset.

Page Maps (cont.)

• The mapping is actually implemented as a 
table called page table.

– Uses a lot of space though.

– Typically, the map has two levels.– Typically, the map has two levels.

– Two level page table are used in Intel x86 chips.

• Other implementations are also possible:

– Linked lists

– Trees

– Etc.

Two-Level Page Tables

Image Source: Intel 80386 Reference Programmer's Manual

Two-Level Page Tables (cont.)

Image Source: Intel 80386 Reference Programmer's Manual

Page Map Implementation

• A page map can be large.

• In most system, it is also dynamic.

– Software can modify it.

• So, it is kept in physical memory.• So, it is kept in physical memory.

– Usable space is thus reduced.

• Virtual memory manager remembers the 

physical address of the page map.

– Most of the time in a special register.



Page Map Format

• Some CPU requires page map to be of a 

particular format.

– Intel x86 requires the above two-level page table.

– Page translation can be done in hardware.– Page translation can be done in hardware.

• Some do not.

– DEC Alpha processor.

– Translation is done in software.

Typical Page Map Design

• Hardware might specify

– Page mapping algorithm

– Page map format.

• Software manages content of page maps.• Software manages content of page maps.

Caching Page Translation

• Keeping page table in memory means that 

every memory reference requires actually two 

memory references.

• This is slow.• This is slow.

• Processor keeps a cache of address translation 
in on-chip memory.

Translation Look-aside Buffer (TLB)

• An implementation of translation cache.

• Associative memory interface:

– STORE(virtual-address-key, physical-address-value)

– READ(virtual-address-key)

• The TLB is very small: 64 - 1024 entries.

• But the key can be any virtual address.

• It is implemented in hardware so is very fast.

• This implementation actually allows software to 
implement page maps in any possible way.

Address Spaces

Address Spaces

• Address space = physical memory a module 
can read or write.

• Limited those blocks that appear in the 
module’s page map.module’s page map.

• We can enforce modularity by making sure 
that the address spaces of modules do not 
overlap.

• This requires that each module has its own 
page map.



Supporting Multiple Address Spaces

• The processor has a register called the page 

map address register (PMAR) that holds 

physical address of the current page table 

being used.being used.

• To transfer control from one module to 

another, the processor must also change the 

PMAR to the appropriate value.

Sharing Memory

• Using page maps can also allow controlled 
sharing of memory between modules.

• How?

– Two page maps can map to the same block.– Two page maps can map to the same block.

• A page map entry can also be supply with 
additional information:

– Permission: Can this process performs READ, 
WRITE, or EXECUTE on this block?

– Device information: See next page.

Memory-mapped I/O

• A module controls a device by reading/writing  

memory locations.

• This can be done by mapping a page to a block 

of a device rather than a memory.of a device rather than a memory.

• By mapping a device to some modules’ 

address spaces and not others’, we can control 

access to devices.

Address Space Management

Managing Address Spaces

• How do we create/delete address spaces?

• How do we grow address spaces?

• How do we switch one address space to 

another? Securely?another? Securely?

• Can’t let user modules handle this.

– Because we don’t trust them not to screw up.

Kernel

• A special module.

• Handles all the above tasks.

• Has its own address space, called the kernel 

address space.address space.

• Kernel space contains all page tables.

– So that the kernel can manage address spaces.



Kernel Memory Management Interface

• CREATE_AS()
– Create an address space.

• ALLOCATE_BLOCK(block)
– Allocate a physical block.

• MAP(id, block, page)• MAP(id, block, page)
– Map a block at physical address {block} to virtual address 

{page} in the page table of the module identified by {id}.

• DELETE_PAGE(id, page)
– Remove mapping of virtual address {page} from the page 

table of the module identified by {id}.

• DELETE_AS(id)
– Remove an address space of the module identified by {id}.

What can we do through the kernel?

• Two modules can share blocks.

– MAP the same block.

• A module can create a new address space its 

child module.child module.

– CREATE_AS

– ALLOCATE_BLOCK

– MAP the allocated blocks to its own address space.

– Read program data to the blocks.

– Map the blocks to the new address space’s page table.

What can we do through the kernel? 

(cont.)

• Kernel can control:

– Sharing

– Protection

– Device accesses by memory mapping– Device accesses by memory mapping

The catch is . . .

• We need to ensure that everything is done 

through the kernel!

• We don’t trust user modules.

– Can’t allow user modules to change the PMAR.– Can’t allow user modules to change the PMAR.

– Can’t allow user modules to manipulate page 

tables.

– Can’t allow user modules to handle interrupts. (If 

we do so, we allow direct access to devices.)

Enforcing Reliance on the Kernel

• Hardware features:

– One bit in the process telling that it is running in 

kernel mode or user mode.

– Make it illegal to use instruction that change the – Make it illegal to use instruction that change the 

PMAR when in user mode.

– Handle interrupts in kernel mode.

• Simply run user module in user mode, and run 

kernel in kernel mode.

Switching Address Space

• Since user modules cannot change PMAR, switching 
address spaces must be done through the kernel.

• Process

– Switching from address space A to kernel.

– Kernel writes PMAR with the physical address of the page – Kernel writes PMAR with the physical address of the page 
table of address space B.

• Note that, to switch the module, we have to switch to 
the kernel first.

• In fact, we reduce the problem to a special case. This 
approach to solve problems is called bootstrapping.



Entering the Kernel

• We require that all modules enter the kernel 

at one single specified address (of instruction).

• Gate = that specified address that served as 

entry point to another address space.entry point to another address space.

Entering the Kernel (cont.)

• We actually want modules to jump to the gate 

if it wants to enter the kernel.

• However, a gate is an address in another 

address space. The user module cannot see it!address space. The user module cannot see it!

Entering the Kernel (cont.)

• Approaches to solve this problem:

– Have the kernel shares the block containing the 

gate with every process.

• What if the user module jumps somewhere else?• What if the user module jumps somewhere else?

• Need a hardware mechanism to ensure that doing so is 

illegal.

– Have the user module execute a special 

instruction, the supervisor call instruction (SVC).

• In x86, this is done by firing a user interrupt. 

Entering the Kernel (cont.)

• When the processor enters the gate, it does 

three things:

– Change the processor from user mode to kernel 

mode.mode.

– Load the PMAR with the address of the kernel 

page map.

– Save the program counter (which contains the 

return address) somewhere, and change the 

program counter to the gate.

Entering the Kernel (cont.)

• The kernel now has control.

• It can:
– Check the argument of the supervisor call to see 

which system call the user module requested.

– If the transfer is caused by an interrupt, it can also – If the transfer is caused by an interrupt, it can also 
check the interrupt number and branch to the correct 
interrupt handler.

– In fact, there can be two or more gates
• One for SVC.

• One for interrupts. 

This is done to save the kernel the trouble of 
distinguishing between the two situations.

Leaving the Kernel

• Once the kernel performed the service the 

user module asked for, it has to switch to 

some user module.

• It has to:• It has to:

– Load the PMAR to the physical address of the user 

module’s page table.

– Reload the program counter that was saved.

– Change from kernel to user mode.



Things to be Careful About

• The three steps of entering and leaving the 

kernel must be done as an atomic operation.

• Atomic operation = it must be done in a single 

step, without interruption.step, without interruption.

• Adverse consequence of not being atomic:

– If the entering is interrupted after changing to 

kernel mode, but before loading the PMAR, then a 

user program might get all access to all the 
privileged instructions.

Things to be Careful About (cont.)

• Some processors do not do all the three steps 

of entering/leaving the kernel for you. 

• For example, the x86 does not have anything 

that resemble the leaving kernel mode that resemble the leaving kernel mode 

instruction.

– In this case, the kernel implementer must deal 

with all of this by himself.

Things to be Careful About (cont.)

• When you change the PMAR, you change the 

address space.

• The instruction pointer points to the address 

in the new address space.in the new address space.

• What’s the next instruction then?

• You really need to be careful about this.

A Toy Implementation

Disclaimer

• This is a toy implementation.

• No system is constructed this way, but very 

similarly.

• Suspend your disbelief.• Suspend your disbelief.

Processor

• 32-bit processor.
– Each register is 32-bit.

– 32-bit address space.

• PMAR
– Least significant bit is the user/kernel mode bit.– Least significant bit is the user/kernel mode bit.

• 0 -> kernel

• 1 -> user

• This can be done because page table location has to be 4-byte 
aligned. So the last two bits is not used anyway.

– Next to least significant bit is interrupt enable bit.
• 0 -> processor will not check for interrupt

• 1 -> otherwise

– When PMAR is 0, there’s no address translation.



Processor (cont.)

• SVC

– Causes the CPU to transfer to a specified location 

(stored in a register).

– Has one argument: the identifier of the gate.–

– For example, “SVC 1” might refer to ALLOCATE_BLOCK.

• Privileged instruction can only be executed in 

kernel mode. This includes setting PMAR.

• Illegal instruction causes the CPU to jump to gates 
for illegal instruction.

Processor (cont.)

• On entering the kernel (through SVC or 

interrupt), the processor saves the current 

instruction pointer on the stack.

• The saved program counter is:• The saved program counter is:

– Address of illegal instruction in the illegal 

instruction case.

– Address of the next instruction to be executed in 
the interrupt or SVC case.

Booting

• When the system is switched on all registers 

are zero

– PMAR is zero. So we start in kernel mode.

– Instruction pointer is also zero.– Instruction pointer is also zero.

• Physical address 0 is the address of the ROM.

• So the system runs the boot program burnt to 

the ROM.

Booting (cont.)

• The boot program loads the kernel from 

storage from the boot block.

• It stores the kernel in a pre-defined location, 

say, address KERNEL.say, address KERNEL.

• The boot program then jumps to KERNEL, 
transferring control to the kernel.

Booting (cont.)

• Kernel then allocates some blocks to use as:

– Its own stack.

– Its own page maps.

• At a predefined address, say KERNELPAGEMAP.• At a predefined address, say KERNELPAGEMAP.

• It fills its own page map.

Booting (cont.)

• Then loads PMAR with KERNELPAGEMAP.

• CAREFUL HERE!

– Once PMAR is loaded, it will be a whole new 
address space altogether.address space altogether.

– How do you ensure that the next instruction is the 
one you intend it to be?

– Answer: Always require that the kernel virtual 
address is the same as physical address.

– This way, the next instruction is the same whether 
you load the PMAR or not.



Booting (cont.)

• The kernel then creates the first user process. 
This process will spawn other user process 
such as file system service, login service, etc.

• It uses CREATE_AS() to create the address • It uses CREATE_AS() to create the address 
space.

• Then allocate some blocks for the code.

• Where to load the code from?

– A predetermined location on the disk.

– This location is built into the the kernel.

Booting (cont.)

• The kernel allocate some more blocks for the 

first user process.

– The page table

– The stack– The stack

• To switch the control to the user process, the 

kernel pushes the address of the first 

instruction of the user program on the stack.

Leaving the Kernel

• What the kernel have to do?

– Load the PMAR with the physical address of the 

user process’s page table.

– Pop the return address from the stack, and jumps – Pop the return address from the stack, and jumps 

to it.

Leaving the Kernel (cont.)

• The code for leaving the kernel is stored at a 

well-know location, say LEAVING.

• Before using LEAVING, the kernel loads R0 

with the physical address of the user page with the physical address of the user page 

table.

Leaving the Kernel (cont.)

LEAVING:

MOV R0, PMAR //load page table address

POP R0 //pop return address from stack

JMP R0 //jump to the return addressJMP R0 //jump to the return address

• Note that the POP instruction pops from the 

USER PROCESS’S stack because we just 
changed the PMAR.

Leaving the Kernel (cont.)

• CAREFUL HERE!

– How can we make sure that the next instruction to 

execute is the POP after changing PMAR?

• Fill the page table of EVERY user process so • Fill the page table of EVERY user process so 

that virtual address LEAVING maps to the 

physical address LEAVING.

• This way, the next instruction is the same 
whether we change PMAR or not.



Leaving the Kernel (cont.)

• This approach has a problem:
– What if the user process writes something to virtual 

address LEAVING?

– If so, then the whole system may not be able to leave 
kernel again.

• Two approaches to deal with this:
– Copy the code to every process’s address space.

– Set permission on the page with address LEAVING so 
that user processes can only READ and EXECUTE from 
it.

– The second approach is less wasteful and more 
successful.

Entering the Kernel

• Similar to leaving, we put entering code at 

address ENTERING.

• Inform the CPU that ENTERING is a gate.

• What do we have to do to enter the kernel?• What do we have to do to enter the kernel?

– The CPU has already changed the mode for us.

– It also has saved the return address on the stack 

of the user process for us.

– So all we have to do is changing the PMAR.

Entering the Kernel (cont.)

ENTERING:

MOV KERNELPAGEMAP, PMAR

JMP {somewhere}

• Again, virtual address ENTERING must map to 

the same physical address for all process to 

ensure that the next instruction is the one 
intened.

Taking Things a Step Further

• Every user process address space has to have two areas 
that it cannot write to, and those areas map to the 
same physical address.
– LEAVING

– ENTERING

• Some systems take another step:• Some systems take another step:
– Cut a portion of the user process address space, and maps 

the kernel address space to that.

– In this way, there’s no need to load PMAR when entering 
the kernel.

– The kernel can also modify the data in user process’s 
address space very easily.
• Just use the normal LOAD and STORE.


