Virtual Memory

Shamelessly taken from
6.033 Course Note Chapter 5.A

Client/Server Architecture

¢ Limit interactions between modules to
messages.

* Good for:
— Modularity
— Fault tolerance

— Security and Protection

Client/Server Architecture (cont.)

* New design opportunities:
— Multiple clients, multiple servers
— Buffered communication

— Sharing resources with people you do not trust.

Client/Server’s Big Problem

¢ Each module has to be in one computer.
* This is very costly and unreasonable.

* Need to pack several modules into one
computer.

Virtualization

* Fool each module that its own computer.

* Three abstractions needed to be virtualized:
— Virtual processor
— Virtual memory
— Virtual communication channel

* All of this are handled by the OS.

Virtual Memory

Memory Abstraction

* Two Operations:
— READ(address)
— STORE(address, value)
* In systems nowadays:
— Addresses are 32-bit or 64-bit numbers.
— Each address refers to a byte.
* So, memory can be viewed as a 232 or 254
contiguous array of bytes.

Why Virtual Memory?

Without it, modules read and write directly to
physical memory.

A module might STORE invalid data on top of
other modules’ data.

A module might jump into the code of other
modaules.

The system is more likely to break if one
module screws up.

Virtual Memory

* Fool every module that it has memory address
0 to 232 for its own exclusive use.

* A module can only read/write from/to its own
virtual memory.

* A module can only jump to instructions in its
own virtual memory.

Virtual Memory (cont.)

In effect, it is a layer of indirection over
physical memory.

A module uses virtual addresses to interface
with memory.

The system translates these virtual addresses
to physical addresses, which is used to
interface with the memory hardware.

The translation process is done by the virtual
memory manager.

Translation

* This virtual address maps to which physical
address?
* Dumb approach

— Keep a table that maps each virtual address to the
corresponding physical address.

— Doesn’t work because of the heavy memory
requirement.

* A better approach: Page Maps

Page Maps

* Partition virtual memory into contiguous

ranges called page.

— Every page has the same size.

— Typically, 4096 bytes.

— 12 bits to address a byte in a page.

* Avirtual address has two components:

— A page number (20 bits in 32-bit system)
— An offset into the page (12 bits)

page number (20 bits) | offset (12 bits) |

Page Maps (cont.)

* Physical memory is also partitioned into
contiguous chucks of bytes called blocks.
* A block has the same size as that of a page.
* So, a physical address can be thought of as
composing of two components:
— A block number
— An offset into bytes of the block

block number (20 bits) offset (12 bits)

Page Maps (cont.)

* The virtual memory manager maps virtual
page numbers to physical page number.

* Address translation process:
— Translates page number to block number.
— Concatenating block number with offset.

Page Maps (cont.)

* The mapping is actually implemented as a

table called page table.

— Uses a lot of space though.

— Typically, the map has two levels.

— Two level page table are used in Intel x86 chips.
* Other implementations are also possible:

— Linked lists

—Trees

— Etc.

Two-Level Page Tables

Figure 5-8. Format of a Linear Address
31 22 21 12 11 a

” DIR || PAGE || OFFSEI ”

Image Source: Intel 80386 Reference Programmer's Manual

Two-Level Page Tables (cont.)

Figure 5-9. Page Translation
PAGE FRAME

[e [eace][oresEr ||

PHYSICAL
ADDRESS
PAGE DIRECTORY PAGE TABLE

PG TBL ENTRY I ¢

DIR ENTRY “

CR3

Image Source: Intel 80386 Reference Programmer's Manual

Page Map Implementation

* A page map can be large.
* In most system, it is also dynamic.
— Software can modify it.
* So, it is kept in physical memory.
— Usable space is thus reduced.
* Virtual memory manager remembers the
physical address of the page map.
— Most of the time in a special register.

Page Map Format

* Some CPU requires page map to be of a
particular format.
— Intel x86 requires the above two-level page table.
— Page translation can be done in hardware.

* Some do not.
— DEC Alpha processor.
— Translation is done in software.

Typical Page Map Design

* Hardware might specify
— Page mapping algorithm
— Page map format.

* Software manages content of page maps.

Caching Page Translation

* Keeping page table in memory means that
every memory reference requires actually two
memory references.

* This is slow.

* Processor keeps a cache of address translation
in on-chip memory.

Translation Look-aside Buffer (TLB)

* Animplementation of translation cache.

* Associative memory interface:
— STORE(virtual-address-key, physical-address-value)
— READ(virtual-address-key)

* The TLB is very small: 64 - 1024 entries.
* But the key can be any virtual address.
* [tis implemented in hardware so is very fast.

* This implementation actually allows software to
implement page maps in any possible way.

Address Spaces

Address Spaces

* Address space = physical memory a module
can read or write.

* Limited those blocks that appear in the
module’s page map.
* We can enforce modularity by making sure

that the address spaces of modules do not
overlap.

* This requires that each module has its own
page map.

Supporting Multiple Address Spaces Sharing Memory

* The processor has a register called the page * Using page maps can also allow controlled
map address register (PMAR) that holds sharing of memory between modules.
physical address of the current page table * How?
being used. — Two page maps can map to the same block.

* To transfer control from one module to * A page map entry can also be supply with

additional information:

— Permission: Can this process performs READ,
WRITE, or EXECUTE on this block?

— Device information: See next page.

another, the processor must also change the
PMAR to the appropriate value.

Memory-mapped I/O

* A module controls a device by reading/writing
memory locations.

* This can be done by mapping a page to a block Address Space Management
of a device rather than a memory.

* By mapping a device to some modules’
address spaces and not others’, we can control
access to devices.

Managing Address Spaces Kernel
* How do we create/delete address spaces? * A special module.
* How do we grow address spaces? * Handles all the above tasks.
* How do we switch one address space to * Has its own address space, called the kernel
another? Securely? address space.

* Kernel space contains all page tables.

¢ Can’t let user modules handle this. — So that the kernel can manage address spaces.
— Because we don’t trust them not to screw up.

Kernel Memory Management Interface

* CREATE_AS()
— Create an address space.
* ALLOCATE_BLOCK(block)
— Allocate a physical block.
* MAP(id, block, page)

— Map a block at physical address {block} to virtual address
{page} in the page table of the module identified by {id}.

* DELETE_PAGE(id, page)
— Remove mapping of virtual address {page} from the page
table of the module identified by {id}.

* DELETE_AS(id)
— Remove an address space of the module identified by {id}.

What can we do through the kernel?

* Two modules can share blocks.
— MAP the same block.
* A module can create a new address space its
child module.
— CREATE_AS
— ALLOCATE_BLOCK
— MAP the allocated blocks to its own address space.
— Read program data to the blocks.
— Map the blocks to the new address space’s page table.

What can we do through the kernel?
(cont.)

* Kernel can control:
— Sharing
— Protection
— Device accesses by memory mapping

The catchiis. ..

* We need to ensure that everything is done
through the kernel!
* We don’t trust user modules.
— Can’t allow user modules to change the PMAR.
— Can't allow user modules to manipulate page
tables.
— Can’t allow user modules to handle interrupts. (If
we do so, we allow direct access to devices.)

Enforcing Reliance on the Kernel

¢ Hardware features:

— One bit in the process telling that it is running in
kernel mode or user mode.

— Make it illegal to use instruction that change the
PMAR when in user mode.

— Handle interrupts in kernel mode.

* Simply run user module in user mode, and run
kernel in kernel mode.

Switching Address Space

* Since user modules cannot change PMAR, switching
address spaces must be done through the kernel.
* Process
— Switching from address space A to kernel.
— Kernel writes PMAR with the physical address of the page
table of address space B.
* Note that, to switch the module, we have to switch to
the kernel first.
* In fact, we reduce the problem to a special case. This
approach to solve problems is called bootstrapping.

Entering the Kernel

* We require that all modules enter the kernel

at one single specified address (of instruction).

* Gate = that specified address that served as
entry point to another address space.

Entering the Kernel (cont.)

* We actually want modules to jump to the gate
if it wants to enter the kernel.

* However, a gate is an address in another
address space. The user module cannot see it!

Entering the Kernel (cont.)

* Approaches to solve this problem:
— Have the kernel shares the block containing the
gate with every process.
* What if the user module jumps somewhere else?
* Need a hardware mechanism to ensure that doing so is
illegal.
— Have the user module execute a special
instruction, the supervisor call instruction (SVC).
* In x86, this is done by firing a user interrupt.

Entering the Kernel (cont.)

* When the processor enters the gate, it does
three things:
— Change the processor from user mode to kernel
mode.
— Load the PMAR with the address of the kernel
page map.
— Save the program counter (which contains the

return address) somewhere, and change the
program counter to the gate.

Entering the Kernel (cont.)

The kernel now has control.

It can:

— Check the argument of the supervisor call to see
which system call the user module requested.

— If the transfer is caused by an interrupt, it can also
check the interrupt number and branch to the correct
interrupt handler.

— In fact, there can be two or more gates

* One for SVC.

* One for interrupts.
This is done to save the kernel the trouble of
distinguishing between the two situations.

Leaving the Kernel

* Once the kernel performed the service the
user module asked for, it has to switch to
some user module.

* |t has to:

— Load the PMAR to the physical address of the user
module’s page table.

— Reload the program counter that was saved.
— Change from kernel to user mode.

Things to be Careful About

* The three steps of entering and leaving the
kernel must be done as an atomic operation.

* Atomic operation = it must be done in a single
step, without interruption.
* Adverse consequence of not being atomic:

— If the entering is interrupted after changing to
kernel mode, but before loading the PMAR, then a

user program might get all access to all the
privileged instructions.

Things to be Careful About (cont.)

* Some processors do not do all the three steps
of entering/leaving the kernel for you.

* For example, the x86 does not have anything
that resemble the leaving kernel mode
instruction.

— In this case, the kernel implementer must deal
with all of this by himself.

Things to be Careful About (cont.)

* When you change the PMAR, you change the
address space.

* The instruction pointer points to the address
in the new address space.

* What's the next instruction then?
* You really need to be careful about this.

A Toy Implementation

Disclaimer

* This is a toy implementation.

* No system is constructed this way, but very
similarly.
* Suspend your disbelief.

Processor

* 32-bit processor.

— Each register is 32-bit.
— 32-bit address space.

* PMAR

— Least significant bit is the user/kernel mode bit.
¢ 0->kernel
¢ 1->user

* This can be done because page table location has to be 4-byte
aligned. So the last two bits is not used anyway.

— Next to least significant bit is interrupt enable bit.
* 0-> processor will not check for interrupt
¢ 1->otherwise

— When PMAR is 0, there’s no address translation.

Processor (cont.)

* SVC
— Causes the CPU to transfer to a specified location
(stored in a register).
— Has one argument: the identifier of the gate.
— For example, “SVC 1” might refer to ALLOCATE_BLOCK.

* Privileged instruction can only be executed in
kernel mode. This includes setting PMAR.

* |llegal instruction causes the CPU to jump to gates
for illegal instruction.

Processor (cont.)

* On entering the kernel (through SVC or
interrupt), the processor saves the current
instruction pointer on the stack.

* The saved program counter is:
— Address of illegal instruction in the illegal
instruction case.

— Address of the next instruction to be executed in
the interrupt or SVC case.

Booting

* When the system is switched on all registers
are zero
— PMAR is zero. So we start in kernel mode.
— Instruction pointer is also zero.
* Physical address 0 is the address of the ROM.
* So the system runs the boot program burnt to
the ROM.

Booting (cont.)

* The boot program loads the kernel from
storage from the boot block.

* It stores the kernel in a pre-defined location,
say, address KERNEL.

* The boot program then jumps to KERNEL,
transferring control to the kernel.

Booting (cont.)

¢ Kernel then allocates some blocks to use as:
— Its own stack.

— Its own page maps.
* At a predefined address, say KERNELPAGEMAP.

* It fills its own page map.

Booting (cont.)

* Then loads PMAR with KERNELPAGEMAP.

* CAREFUL HERE!
— Once PMAR is loaded, it will be a whole new
address space altogether.
— How do you ensure that the next instruction is the
one you intend it to be?
— Answer: Always require that the kernel virtual
address is the same as physical address.

— This way, the next instruction is the same whether
you load the PMAR or not.

Booting (cont.)

* The kernel then creates the first user process.
This process will spawn other user process
such as file system service, login service, etc.

* It uses CREATE_AS() to create the address
space.

* Then allocate some blocks for the code.

* Where to load the code from?
— A predetermined location on the disk.
— This location is built into the the kernel.

Booting (cont.)

* The kernel allocate some more blocks for the
first user process.
— The page table
— The stack

* To switch the control to the user process, the

kernel pushes the address of the first
instruction of the user program on the stack.

Leaving the Kernel

¢ What the kernel have to do?

— Load the PMAR with the physical address of the
user process’s page table.

— Pop the return address from the stack, and jumps
toit.

Leaving the Kernel (cont.)

* The code for leaving the kernel is stored at a
well-know location, say LEAVING.
* Before using LEAVING, the kernel loads RO

with the physical address of the user page
table.

Leaving the Kernel (cont.)

LEAVING:
MOV RO, PMAR //load page table address
POP RO //pop return address from stack
JMP RO //jump to the return address

* Note that the POP instruction pops from the

USER PROCESS’S stack because we just
changed the PMAR.

Leaving the Kernel (cont.)

* CAREFUL HERE!
— How can we make sure that the next instruction to
execute is the POP after changing PMAR?
* Fill the page table of EVERY user process so
that virtual address LEAVING maps to the
physical address LEAVING.

* This way, the next instruction is the same
whether we change PMAR or not.

Leaving the Kernel (cont.)

* This approach has a problem:

— What if the user process writes something to virtual
address LEAVING?

— If so, then the whole system may not be able to leave
kernel again.
* Two approaches to deal with this:
— Copy the code to every process’s address space.

— Set permission on the page with address LEAVING so
that user processes can only READ and EXECUTE from
it.

— The second approach is less wasteful and more
successful.

Entering the Kernel

Similar to leaving, we put entering code at
address ENTERING.

Inform the CPU that ENTERING is a gate.
What do we have to do to enter the kernel?

— The CPU has already changed the mode for us.

— It also has saved the return address on the stack
of the user process for us.

— So all we have to do is changing the PMAR.

Entering the Kernel (cont.)

ENTERING:
MOV KERNELPAGEMAP, PMAR
JMP {somewhere}

* Again, virtual address ENTERING must map to
the same physical address for all process to

ensure that the next instruction is the one
intened.

Taking Things a Step Further

Every user process address space has to have two areas

that it cannot write to, and those areas map to the

same physical address.

— LEAVING

— ENTERING

Some systems take another step:

— Cut a portion of the user process address space, and maps
the kernel address space to that.

— In this way, there’s no need to load PMAR when entering
the kernel.
— The kernel can also modify the data in user process’s
address space very easily.
* Just use the normal LOAD and STORE.

