
Eurographics Symposium on Rendering (2006)
Tomas Akenine-Möller and Wolfgang Heidrich (Editors)

Instant Ray Tracing: The Bounding Interval Hierarchy

Carsten Wächter† and Alexander Keller‡

Abt. Medieninformatik, University of Ulm, 89069 Ulm, Germany

Figure 1: Images from animations and interactive applications generated by our new ray tracing algorithm at interactive rates on a
single processor. Quake II (image on the right) can be played smoothly on a dual core processor with one shadow of a point light source,
reflections, and refractions.

Abstract
We introduce a new ray tracing algorithm that exploits the best of previous methods: Similar to bounding volume
hierarchies the memory of the acceleration data structure is linear in the number of objects to be ray traced and
can be predicted prior to construction, while the traversal of the hierarchy is as efficient as the one of kd-trees.
The construction algorithm can be considered a variant of quicksort and for the first time is based on a global
space partitioning heuristic, which is much cheaper to evaluate than the classic surface area heuristic. Compared
to spatial partitioning schemes only a fraction of the memory is used and a higher numerical precision is intrinsic.
The new method is simple to implement and its high performance is demonstrated by extensive measurements
including massive as well as dynamic scenes, where we focus on the total time to image including the construction
cost rather than on only frames per second.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray Tracing

1. Introduction

Ray tracing is the core technique of photo realistic image
synthesis by global illumination simulation. It also under-
lies many other simulation methods. Although known for
long, only recently realtime ray tracing became available.
Current ray tracing algorithms owe their efficiency to an ad-
ditional data structure that has to be constructed from the
scene geometry beforehand. So far this had taken consider-
able amounts of time and memory. Consequently the pre-
processing amortized only for environments that are static
or contain moderate dynamics.

† carsten.waechter@uni-ulm.de
‡ alexander.keller@uni-ulm.de

While graphics hardware cannot efficiently handle all ef-
fects of global illumination, software ray tracing easily can
compete with high end graphics hardware images synthesis
for massive geometry and even the acceleration data struc-
tures of ray tracing can be used to enhance the performance
of rasterization. Compared to immediate mode rendering
on a rasterizer, however, the construction time and memory
footprint of the acceleration data structures are prohibitive.

Only little research has been carried out concerning the ef-
ficient construction of the acceleration data structure and ad-
vances for massive geometry and/or dynamic geometry were
rather moderate until recently.

We propose a hierarchical acceleration data structure for
ray tracing that can be constructed much more efficiently

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

than previous approaches. The procedure is so fast that in-
teractive ray tracing of dynamic scenes becomes available
on even mono-processor systems (see the snapshots in fig-
ure 1).

For the sequel we assume the reader’s familiarity with the
ideas of ray tracing [Gla89, Shi00].

2. Principles of Accelerating Ray Tracing

When tracing huge numbers of rays for image synthesis it
obviously is not efficient to intersect each ray with all ob-
jects in the scene in order to find the closest point of inter-
section for each ray. It amortizes to construct additional data
structures that allow one to exclude most of the objects from
actual intersection testing.

To obtain such a data structure either the space containing
the objects can be partitioned or the list of objects can be
partitioned. While it is obvious to have a hybrid, we briefly
sketch the two pragmatic approaches in the following sub-
sections.

Aside of amortizing the construction cost of the accelera-
tion data structure, there are situations, where the additional
cost of not only tracing single rays but sets of rays can amor-
tize, too. We will discuss these issues in section 4.3.

2.1. Partitioning Space

The space containing the objects is partitioned into disjoint
volume elements. Efficiency is obtained by enumerating the
volumes intersected by a ray and then testing the objects in
the volumes for intersection. A major disadvantage of space
partitions is that objects often are referenced more than once,
since they may have non-empty intersections with more than
one of the volume elements. This results in larger memory
footprint and requires a mailbox mechanism to avoid perfor-
mance losses by multiply intersecting one ray with the same
geometric object.

2.1.1. Regular Grids

The space is partitioned into a raster of identical rectangular
axis-aligned volumes. This regular structure allows for sim-
ple algorithms that enumerate the volume elements along a
given ray. As each volume contains a list of the objects that
it intersects, only their objects are intersected with the ray.

The memory footprint of the acceleration data structure
cannot be determined in advance, because objects can in-
tersect multiple volume elements and thus requires dynamic
memory management. The data structure is constructed by
rasterizing the objects. This requires variants of an object-
volume element intersection routine, which is numerically
unreliable due to the finite precision of floating point arith-
metic. Rasterizing the bounding box of the object is numer-
ically stable, but increases the memory footprint.

The efficiency of this straightforward approach severely
suffers from traversing empty volume elements, as espe-
cially explored for massive scenes. A solution to this prob-
lem is found in hierarchical grids that allow empty space to
be traversed faster while still having a moderate number of
objects per volume element. Switching between the levels
of the hierarchy, however, is expensive and can be achieved
more efficiently by other spatially adaptive schemes.

2.1.2. Binary Space Partition

The binary space partition is a hierarchical data structure.
The general idea is to adaptively subdivide space by using ar-
bitrary planes, which allows one to overcome the efficiency
issues of regular grids caused by empty volumes elements.
In polygonal scenes an obvious choice is to use the planes
determined by the polygons themselves. However, it is not
known how to do this in an optimal way and randomized al-
gorithms are expected to yield trees of quadratic size in the
number of objects in the scene [MR95, Sec.9.7].

kd-trees restrict binary space partitions to using only
planes that are perpendicular to the canonical axes. Since
all normals of the subdivision planes coincide with one of
the canonical axes unit vectors, scalar products and object-
volume element intersection tests become more efficient and
numerically robust than in the original binary space parti-
tions. Still, the decision of how a partitioning plane intersects
an object remains a numerical issue. Along with heuristics
for subdivision kd-trees have been used very successfully
for accelerating ray tracing [Wal04, Hav01, Ben06, Kel98,
RSH05].

As with all spatial partitioning schemes, objects can reside
in more than one volume element. Although the number of
multiple references can be effectively reduced by allowing
only partitioning planes through the vertices of the objects,
the number of references cannot efficiently be bounded a pri-
ori. Consequently, memory management becomes an issue
during the construction of the hierarchy. Heuristics used for
memory estimation and allocation only hold true for com-
mon scenes, but can be way too pessimistic for others, or
even worse, can result in various reallocations if the lists
need to grow during the construction phase. This results in
performance losses by memory fragmentation.

2.2. Partitioning Object Lists

When partitioning a list of objects, each object remains refer-
enced at most once and it becomes possible to a priori predict
memory requirements. In addition each object is intersected
at most once with a ray and consequently mailboxes become
redundant. As an unavoidable consequence the volumes en-
closing groups of objects often cannot be disjoint.

2.2.1. Bounding Volume Hierarchy

Bounding volume hierarchies have been introduced in
[RW80,KK86] and often are used in industry since memory

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

requirements a priori can be bounded linearly in the number
of objects. However, limits of the classic approaches were
explored in the first ray tracing chip [Hal99] and efficient
software implementations [GM03, WBS06] that remained
inferior to the performance of kd-trees.

Implementing bounding volume hierarchies does not re-
quire object-plane intersection routines. As a consequence
they are simpler to implement than spatial partitioning
schemes. Using axis-aligned rectangular bounding volumes
avoids any numerical stability issues during construction as
only minimum/maximum operations are used.

There exist heuristics for both the bottom-up and
top-down construction, which have been summarized in
[WBS06]. The usual heuristic is to minimize the overall vol-
ume of all volume elements. These optimization procedures
are prohibitively slow and in fact it is not clear what is the
most efficient construction algorithm.

Severe performance penalties stem from the fact that op-
posite to binary space partitions the volume elements were
not ordered. Usually all child nodes have to be intersected
with a ray, because an early pruning was impossible due to a
lack of a spatial order. This problem already has been iden-
tified in [FP93].

2.3. Summarizing the State of the Art

Certainly the simplicity, numerical robustness, and pre-
dictable memory footprint make bounding volume hierar-
chies most attractive for accelerating ray tracing [KK86,
GM03]. However, the current performance is below what is
obtained using kd-trees. At the price of hardly predictable
memory requirements and numerical issues during the con-
struction of the acceleration data structure, realtime perfor-
mance is obtained [Wal04,Ben06,Bik05] for static and mod-
erately dynamics scenes.

Both principle approaches of either dividing space or ob-
ject lists suffer from construction routines that are far from
realtime and use greedy algorithms, which certainly is an-
other disadvantage. The most successful concept is the sur-
face area heuristic [GS87, Hav01, Wal04, WBS06]. As it re-
quires a fair amount of analysis of scene geometry and twid-
dling, the construction for a complex mesh can easily be in
the range of minutes to even days [Wal04, WH06, WSB01,
SBB∗06, WDS04].

While the construction times amortize for static scenes,
very moderate dynamics [Wal04], or deformables only
[WBS06], they are much more difficult to amortize in
fully dynamic settings. Attempts to deal with fully dynamic
scenes so far use regular grids [RSH00,WIK∗06] with all its
disadvantages and are only efficient for scenes of moderate
complexity.

a b

c d

Figure 2: Geometric primitives overlapping the splitting
plane of a kd-tree have to be referenced in both child vol-
ume elements in a), while the bounding interval hierarchy
in b) assigns an object to either the left L or right R child.
Traversing a node of the kd-tree in c) requires to distinguish
the four cases L, R, LR, or RL, whereas in the bounding in-
terval hierarchy in d) the additional fifth case of traversing
empty volume has to be considered.

3. The Bounding Interval Hierarchy

We propose a simple algorithm, which at the same time of-
fers exceptional speed for both static and dynamic scenes,
features much higher numerical precision, and allows one to
a priori fix the memory footprint. It can be considered as the
cross-over of the advantages of partitioning object lists and
efficiently traversing spatial partitions.

Comparisons with two fully optimized state-of-the-art kd-
tree based ray tracers (InView and our own implementation)
show that it can outperform them for most scenes by a fac-
tor of two to even some orders of magnitudes for both total
rendering time and overall memory consumption (as shown
in figure 6).

3.1. Data Structure

Unlike classic bounding volume hierarchies [KK86,GM03],
which store a full axis aligned bounding box for each child,
the idea of the bounding interval hierarchy is to only store
two parallel planes perpendicular to either one of x, y, and
z-axis. Given a bounding box and the axis, the left child L
results from replacing the maximum value along that axis
by the first plane. In an analogue way the right child R re-
sults from replacing the minimum value by the second plane
(see figure 2). Resulting zero volumes are used to represent
empty children.

The inner nodes of the tree are described by the two clip-
ping planes and a pointer to a pair of children. As this sums
up to 12 bytes in total, all nodes are aligned on four-byte-
boundaries. This allows one to use the lower two bits of the
children-pointer to indicate the axis (00: x, 01: y, 10: z) or
a leaf (case 11). Leaf nodes consist of a 32bit-pointer to the

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

t y p e d e f s t r u c t
{

i n t Index ;
/ / l o w e s t b i t s : a x i s (0 0 , 0 1 , 1 0) or l e a f (1 1)
union
{

i n t I t e m s ; / / l e a f o n l y
f l o a t C l i p [2] ; / / i n t e r n a l node o n l y

} ;
} BIH_Node ;

referenced objects and their overall number. The overhead
of four bytes in the leafs (as they only use eight bytes out of
the node data structure) can be resolved by a careful imple-
mentation.

3.2. Ray Intersection

Intersecting a ray with the bounding interval hierarchy bi-
nary tree is similar to traversing a bounding volume hierar-
chy. However, since the children are spatially ordered in the
new data structure this can be implemented much more effi-
ciently, since it is possible to directly access the child that is
closer to the ray origin by the sign of the ray direction. The
traversal thus becomes almost identical to that of a kd-tree,
as illustrated in figure 2.

In analogy to bounding volume hierarchies, it is also pos-
sible to not intersect any child at all if the valid ray seg-
ment is between two non-overlapping children (see figure
2d). Handling this additional case is even beneficial, because
it implicitly skips empty leafs. Consequently empty leafs can
never be accessed and therefore do not need to be stored.

Opposite to spatial partitions, the volume elements of a
bounding interval hierarchy can overlap and consequently
the recursive traversal cannot stop as soon as an intersec-
tion is found. It is always necessary to test all remaining vol-
ume elements on the stack for closer intersections. However,
as soon as an intersection is found, branches of the hierar-
chy can be pruned if they represent volume elements further
away than the current intersection.

3.3. Construction of the Hierarchy

The key to the performance of our new data structure is the
efficient construction. Assuming a split plane to be given,
the algorithm is fairly simple: Each object is classified ei-
ther left or right depending on which side of the plane it
overlaps most. Then the two partitioning plane values of the
child nodes are determined by the maximum and minimum
coordinate of the left and right objects, respectively.

3.3.1. A new Global Heuristic

What remains is to determine the split planes. Unlike pre-
vious approaches [GS87, Hav01, WH06, WBS06], a non-

greedy heuristic is used that is cheap to evaluate, because
it does not explicitly analyze the objects to be ray traced.

As illustrated in figure 3a, we use candidate planes result-
ing from hierarchically subdividing the axis-aligned scene
bounding box along the longest side in the middle. Note that
all candidates in fact form a regular grid. If a candidate plane
is outside the bounding box of a volume element to subdi-
vide, we continue with candidates from the half, where the
volume element resides (see figure 3b).

Together with the algorithm from the previous subsec-
tion, the object list is recursively partitioned and bounding
boxes are always aligned to object bounding boxes. If a split
plane candidate separates objects without overlap, the result-
ing split planes implicitly become tightly fitted to the objects
on the left and right thus maximizing empty space (see figure
2d). Although the recursion terminates, when only one ob-
ject is left, we define a number of objects, for which a recur-
sion is efficient. Thus trees become flatter, memory require-
ments are reduced and the traversal cost is balanced against
the cost of primitive intersections.

It is important to note that the split plane candidates are
not adapted to actual bounding boxes of the inner nodes,
but are solely determined by the global bounding box of the
scene. This is the actual difference to previous approaches,
which results in an adaptive approximation of the global reg-
ular grid as close as possible and bounding boxes as cubic as
possible throughout the hierarchy.

3.3.2. Approximate Sorting
The construction in fact is a sorting algorithm with a
structure identical to quicksort and consequently runs in
O(n logn) on the average. Using a bucket sorting preprocess
similar to [FP93], the constant of the order can be decreased.
Therefore the objects are processed in three steps:

1. The resolution of the regular grid is determined by the
ratio of the scene bounding box divided by the average
object size. As a spatially uniform distribution of objects
is highly unlikely, this number is scaled down by a user
parameter (we used the factor 1

6 for the measurements in
figure 10) in order to avoid too many empty cells. Each
grid cell consists of a counter that is initialized to zero.

2. One point of every object (e.g. one corner of its bound-
ing box) is used to increment the counter in the grid cell
containing that point. In the end the sum of all coun-
ters equals the number of objects. We now transform the
counters to offsets by replacing each counter by the sum
of all previous counters.

3. A global object index array is allocated and using the
same point of every object, the objects now can be sorted
into the buckets using the offsets from the previous step.
For each bucket we compute the bounding box of the ob-
jects it contains.

Sorting the bounding boxes instead of the objects they con-
tain speeds up construction by a factor of two to three. If

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

a b c

Figure 3: Illustration: a) Split plane candidates from hierarchically subdividing along the longest side of the axis-aligned
bounding box. b) Used candidates and c) resulting binary interval hierarchy (red: left child L, blue: right child R).

a volume element consists of one container only, the con-
tainer is replaced by the objects within. The resulting trees
are very similar in rendering performance and size (see fig-
ure 10). Note that all other measurements in this paper have
been performed without the approximate sorting preprocess.

This simple algorithm partitions a scene in linear time us-
ing a limited amount of memory. Even the index array can
be processed in chunks.

3.3.3. Implementation Details

Because the bounding interval hierarchy is an object parti-
tioning scheme, all object sorting can be done in place and
no temporary memory management is required. The recur-
sive construction procedure only needs two pointers to the
left and right objects in the index array similar to the quick-
sort algorithm.

On the other hand spatial partitioning schemes need to
handle objects that overlap volume elements. For example
the recursive kd-tree construction needs a vast amount of
temporary data to be placed on the stack to be able to con-
tinue with backtracking later on.

We like to note that a variant of the above scheme can al-
leviate these inefficiencies and makes in place sorting avail-
able for kd-trees. The procedure requires a second array of
object references that is used to keep the objects that are
classified both left and right. Testing with a large number
of scenes revealed that the size of this array can be chosen
by a default value (a length equal to the number of objects is
far more than one will ever need in 99 percent of the cases).
However, because the real length of the array cannot be pre-
dicted, it might be necessary to reallocate memory. The pro-
cedure is illustrated in figures 4 and 5.

3.4. Construction on Demand

So far the presented framework already allows for interactive
ray tracing. However, construction time and memory foot-
print of the acceleration data structure can be further opti-
mized by constructing it only, where rays traverse, i.e. where
geometry is "visible".

The implementation with the bounding interval hierarchy
is fairly simple and especially beneficial for large scenes that
feature a high depth complexity. Since all object sorting is
done in place, only a flag is required to mark volume ele-
ments that have not yet been subdivided. Upon traversal of a
ray, the subdivision routine is called if the flag is set. A sim-
ple optimization is to subdivide a node completely, if all ob-
jects contained in it fit into the cache (e.g. L1- or L2-cache).
The on demand construction removes the classic separation
of traversal and construction routines.

Using this simple extension we are able to render the Boe-
ing 777 mesh at 1280×1024 resolution in 3-9 minutes (de-
pending on camera position) from scratch on a single core of
an Opteron 875 2.2 GHz machine with 32GB RAM. Com-
pared to previous approaches we only use a fraction of mem-
ory (see figure 8). The total rendering time of one view thus
matches the time that InTrace’s InView/OpenRT 1.4 uses to
just build the acceleration data structure of the more than 350
times smaller conference room.

4. Discussion

The bounding interval hierarchy is an object partitioning
scheme that benefits from the efficient traversal techniques
of spatial partitioning schemes. In the sequel we point out
the advantages of our approach.

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

.

.

.

Figure 4: kd-tree in place sorting of object indices (upper array) and storing on the global stack (lower array) during tree
construction. From left to right, from top to bottom: In this illustration, sorting the unordered array first reveals a left element
which stays in place. The second element must go to the right and is exchanged with an unsorted element from the right end of
the array. In the third case an object has to be sorted into both volumes and therefore is moved to the stack. After sorting all
objects, the stacked elements are copied to the middle segment of the index array and the tree construction continues with the
left child.

Figure 5: Restoring stacked objects indices after a stack pop operation.

4.1. Memory Footprint

Since the construction algorithm matches split planes to ob-
ject bounding boxes, the number of inner nodes in the hier-
archy is bounded by six times the number of objects. In the
case of polygons this number is bounded by the minimum of
the previous bound and three times the number of vertices.
The number of object references exactly matches the number
of objects in the scene.

Due to multiple object references, the latter bound is not
available for spatial partitioning schemes as for example the
kd-tree. The problem becomes apparent, where objects fea-
ture a locally high number of overlapping bounding boxes or
almost random distribution: In the BART museum the num-
ber of replicated triangle indices was about 400 times (peak
value) the number of triangles, which also resulted in a 40
times higher number of nodes than in the bounding interval
hierarchy. This problem is intrinsic to kd-trees, as the first
top level splits already duplicate a lot of triangle references,
an effect which is continued during recursion.

4.2. Numerical Precision

The bounding interval hierarchy construction only uses
bounding box information and minimum/maximum opera-
tions in the canonical coordinate system. As such the proce-
dure is numerically unconditionally robust.

Spatial partitioning schemes require object plane intersec-
tion routines that rely on operations that suffer from floating
point imprecisions. In order to make the algorithms stable
tolerances must be added. As a consequence performance
suffers.

4.3. Tracing Sets of Rays

If rays are coherent, it can pay off to trace sets of rays instead
of single rays. While primary rays easily can be grouped in
coherent sets, it becomes already difficult to get the same
benefits for sets of shadow rays from point light sources
[RSH05, WIK∗06]. Refracted, reflected, or rays from ran-
dom walk simulations are even more difficult.

Nevertheless, given a set of coherent rays, the approaches

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

Shirley Scene 6 InView WH06 kd BIH on demand
Triangles 1,380 n.a. 804 dto. dto.
Triangle memory 66,240 n.a. 28,944 dto. dto.
Acc. Data memory 115,312 n.a. 55,188 12,828 11,972
fps 5.02 n.a. 11.17 11.99 n.a.
Time to image (msec) 199 n.a. 89 83 87
Stanford Dragon InView WH06 kd BIH on demand
Triangles 863,334 863k 871,414 dto. dto.
Triangle memory 41,440,032 n.a. 31,370,904 dto. dto.
Acc. Data memory 26,207,404 n.a. 24,014,264 13,466,176 5,175,936
fps 2.49 n.a. 5.92 5.98 n.a.
Time to image (msec) 44,500 23,900 3,106 1,557 1,102
Stanford Buddha InView WH06 kd BIH on demand
Triangles 987,361 1.07M 1,087,716 dto. dto.
Triangle memory 47,393,328 n.a. 39,157,776 dto. dto.
Acc. Data memory 32,518,372 n.a. 30,566,796 17,344,944 2,719,628
fps 3.13 n.a. 7.55 7.41 n.a.
Time to image (msec) 53,819 32,200 3,695 1,837 705
BART Tra.fo. Kitchen InView WH06 kd BIH on demand
Triangles 111,116 n.a. 110,561 dto. dto.
Triangle memory 5,333,568 n.a. 3,980,196 dto. dto.
Acc. Data memory 9,989,240 n.a. 5,812,276 1,792,880 1,145,972
fps 1.77 n.a. 4.65 1.76 n.a.
Time to image (msec) 16,565 n.a. 871 724 770
Ward Conference InView WH06 kd BIH on demand
Triangles 964,471 n.a. 1,064,498 dto. dto.
Triangle memory 46,294,608 n.a. 38,321,928 dto. dto.
Acc. Data memory 101,627,372 n.a. 84,222,332 16,007,852 1,331,780
fps 2.9 n.a. 9.55 4.12 n.a.
Time to image (msec) 171,344 n.a. 11,204 1,523 630
Stanford Bunny InView WH06 kd BIH on demand
Triangles 70,027 69k 69,451 dto. dto.
Triangle memory 3,361,296 n.a. 2,500,236 dto. dto.
Acc. Data memory 6,186,288 n.a. 4,352,248 974,080 504,744
fps 3.53 n.a. 9.9 10.2 n.a.
Time to image (msec) 9,283 4,800 445 176 165
Car 1 InView WH06 kd BIH on demand
Triangles 313,460 n.a. 312,888 dto. dto.
Triangle memory 15,046,080 n.a. 11,263,968 dto. dto.
Acc. Data memory 26,785,196 n.a. 15,093,468 4,989,168 1,271,168
fps 3.15 n.a. 7.97 6.99 n.a.
Time to image (msec) 39,817 n.a. 1,656 581 371
Blender Suzanne InView WH06 kd BIH on demand
Triangles 252,436 n.a. 251,904 dto. dto.
Triangle memory 12,116,928 n.a. 9,068,544 dto. dto.
Acc. Data memory 12,508,532 n.a. 12,139,800 3,707,292 2,083,020
fps 3.84 n.a. 7.35 8.31 n.a.
Time to image (msec) 18,260 n.a. 1,229 448 359

Figure 6: Comparison of the new technique and state-of-the-art kd-tree implementations, using a very simple shader and 2x2
(SSE accelerated) ray bundles (640x480 pixels, measured on a Pentium 4HT 2.8 GHz, whereas [WH06] performance data
were measured on a faster Opteron 2.6 GHz). The varying number of triangles results from the VRML converter that we used
to generate input for InView. Since the free version of InView is limited to 106 triangles, we removed invisible triangles from
larger models for InView. Time to image measures the total rendering time for one picture, thus including (on demand) tree
construction, ray tracing, and shading. The bounding interval hierarchy is clearly superior in memory and total time to image.

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

BART Museum (10,412 triangles) kd BIH on demand
a) Average fps (primary rays only) 3.48 3.34 3.26

Rendering time for complete animation (msec) 86,286 89,935 92,327
b) Average fps (average 3.917 rays per pixel) 0.91 0.79 0.78

Rendering time for complete animation (msec) 329,060 381,754 388,114
BART Museum (75,884 triangles) kd BIH on demand
a) Average fps (primary rays only) 0.39 2.04 2.08

Rendering time for complete animation (msec) 776,568 147,002 144,444
b) Average fps (average 4.024 rays per pixel) 0.28 0.49 0.48

Rendering time for complete animation (msec) 1,057,259 614,503 620,728
BART Kitchen (110,561 triangles) kd BIH on demand
Average fps 1.45 1.96 2.17
Rendering time for complete animation (msec) 552,207 407,460 368,903

BART Robots (71,708 triangles) kd BIH on demand
Average fps 1.51 1.41 1.49
Rendering time for complete animation (msec) 530,561 567,988 537,974

Utah Fairy Forest (174,117 triangles) kd BIH on demand
Average fps 0.78 1.79 1.95
Rendering time for complete animation (msec) 26,780 11,695 10,771

Figure 7: Comparison using dynamic environments (640x480 pixels, Pentium 4HT 2.8 GHz). The complete data structure is
rebuilt per frame from scratch. The museum is traced using a) simple shading and b) full shading (using an average of 4 rays
per pixel), where in both cases only single rays are traced. The remaining BART scenes are rendered with the simple shader,
while the Utah Fairy Forest uses full shading.

Boeing View 1 View 2 View 3 View 4 View 5 View 6
Acc. Data 326,447,848 12,748,120 15,471,692 259,261,404 50,963,768 324,602,460
fps 0.26 0.13 0.13 0.38 0.11 0.34
Total 8 min. 133 sec. 153 sec. 270 sec. 118 sec. 252 sec.

Figure 8: Total rendering times (1280x1024 pixels, single core of an Opteron 875 2.2 GHz 32GB) including on demand tree
construction for the Boeing 777 data set (349,569,456 triangles amounting 12,584,500,416 bytes). Reading the triangle data
from hard disk is omitted, since it heavily depends on the hard disks used (in our case 40-90 seconds loading time).

Boeing View 1 View 2 View 3 View 4 View 5 View 6
Peak memory 1,075,418,112 538,697,728 1,054,035,968 1,267,494,912 1,078,779,904 1,190,248,448
Rendering time 5 min. 19 sec. 33 sec. 68 sec. 6 min. 45 sec. 95 sec. 5 min. 57 sec.

Figure 9: Rendering times (1280x1024 pixels, Pentium 4HT 2.8 GHz 2GB RAM, 349,569,456 triangles), including low level
on demand tree construction and loading all necessary triangle groups from disk. The top level bucket sort preprocess, done
once for all views, takes additional 53 minutes but only uses a peak 737 MBytes of RAM. The cache sizes for the preprocess
and rendering were chosen to be suitable for any consumer machine offering at least 1 GB of RAM. More RAM allows for even
faster rendering times (see previous figure), whereas the preprocessing step is mainly limited by the (slow and cheap) hard disk.

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

Stanford Buddha WH06 BIH+Bucket BIH
Triangles 1.07M 1,087,716 dto.
fps n.a. 94% 100%
Construction (msec) 32,200 765 1,703
Stanford Dragon WH06 BIH+Bucket BIH
Triangles 863k 871,414 dto.
fps n.a. 93% 100%
Construction (msec) 23,900 657 1,390
Stanford Thai Statue WH06 BIH+Bucket BIH
Triangles 10M 10,000,000 dto.
fps n.a. 94% 100%
Construction (msec) 61,000 7,812 17,484

Ward Conference BIH+Bucket BIH
Triangles 1,064,498 dto.
fps 96% 100%
Construction (msec) 937 1,281
Car 1 BIH+Bucket BIH
Triangles 312,888 dto.
fps 100% 100%
Construction (msec) 250 438
UNC Power Plant BIH+Bucket BIH
Triangles 12,748,510 dto.
fps 79% 100%
Construction (msec) 11,609 20,282

Figure 10: Comparison of the bounding interval hierarchy with/without using the bucket sort preprocess (640x480, Pentium
4HT 2.8 GHz) to numbers taken from [WH06], where a faster Opteron 2.6 GHz processor was used. fps are given relative to
the "pure" bounding interval hierarchy, as several camera positions fps were averaged. The bounding interval hierarchy is the
clear winner.

Car 2 (542,108 triangles) kd BIH on demand
Triangle memory 19,515,888 dto. dto.
Acc. Data memory 23,756,320 8,807,636 8,132,108
fps (1st Pass) 0.46 0.44 n.a.
Time to image (msec) 4,595 2,944 2,830

Figure 11: Comparison of the new technique and our state-of-the-art kd-tree implementation, using advanced shaders that
trace single rays only (640x480 pixels, Pentium 4HT 2.8 GHz). Time to image measures the total rendering time for one picture,
thus including (on demand) tree construction, ray tracing, and shading. This is a stress test for the on demand construction,
because the global illumination computations requires to construct almost the full tree.

to trace sets of rays benefit from our new data structure.
This is certainly due to the reduced memory bandwidth and
increased cache coherency resulting from the small mem-
ory footprint and the fact that the bounding interval hierar-
chy always is flatter than the kd-tree. Furthermore the vol-
ume elements appear generally larger than the corresponding
volumes of a kd-tree, which relaxes the conditions on co-
herency. Our experiments reveal that the speedup-ratio from
single ray to 2x2-ray-bundle-tracing is slightly higher for the
bounding interval hierarchy as compared to a kd-tree.

The frustum culling techniques introduced in [RSH05]
have been successfully transferred to bounding volume hi-
erarchies in [WBS06]. These techniques easily can be trans-
ferred to the bounding interval hierarchy by tracking the cur-
rent volume element bounding box on the stack. Although
our hierarchy can be updated in the fashion of [WBS06],
too, our construction routine is much faster than the surface
area heuristic and removes the severe restriction to meshes
animated by only deformations. Then combining our tech-
niques with the traversal techniques from [WBS06] seems
to be ideal for rays that can be grouped into shafts.

Note that shaft culling techniques become problematic for
diverging sets of rays as it naturally happens over the dis-
tance.

4.4. Hardware Considerations

Based on the recent findings in realtime ray tracing the RPU-
chip [WSS05] has been designed. While the architecture ef-
ficiently can ray trace and shade bundles of rays, it can be
easily improved by our approach: The bounding interval hi-
erarchy has a much smaller memory footprint and as an ob-
ject partitioning scheme does not need a mailbox unit. Only
the TPU unit has to be extended by a second plane intersec-
tion. These modifications easily can be incorporated due to
the similarity of our traversal to a kd-tree traversal.

More important the construction algorithm (Sec.3.3) uses
only simple operations and therefore is a very good candi-
date for hardware implementation.

4.5. Massive Data Sets

Current data sets used in industrial applications and pro-
duction rendering consist of massive amounts of geometry,
which usually range from hundreds of megabytes to several
gigabytes of raw data. Although we demonstrated (Sec. 3.4)
that the small memory footprint of the bounding interval hi-
erarchy allows massive scenes to be efficiently ray traced by
simple means, there still may be situations, where the data
does not fit into the main memory.

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

Along the lines of [WSB01], we implemented a minimal
memory footprint renderer which is able to render pictures
of the Boeing 777 using only 50 MB of RAM. If more RAM
is available (we assumed 1 GB for our measurements) it is
possible to render a picture from scratch in less than an hour
even on a standard consumer desktop PC (see figure 9).

To achieve the minimal memory usage, we use the pro-
posed preprocessing step to sort the triangles into buckets
and store these on the hard disk. For the rendering step, a top
level bounding interval hierarchy is created out of the buck-
ets (without needing to touch any triangle). Each bucket that
is intersected by a ray creates its own tree using the on de-
mand policy. The bucket’s triangles and the acceleration data
structure are kept in a cache of either dynamic (able to grow
until no more RAM is available) or fixed user-defined size.
The bucket with the largest number of triangles defines the
maximum memory footprint. Note that this results for free
from the bucket sorting preprocess.

In this scenario the processing speed is determined by the
speed of the hard disks. Our tree construction algorithm is so
fast, that if parts of the acceleration data structure have to be
flushed, they are just thrown away and rebuilt on demand.

4.6. Large Objects

One might argue that the bounding interval hierarchy per-
formance suffers when encountering a mixture of small and
large geometric elements. While this is partially true, it is
also true for spatial partitioning schemes.

In this situation a kd-tree subdivides the scene by inserting
more splitting planes. This results in deeper trees, a duplica-
tion of object references, and an overall increased memory
footprint. Deeper trees increase the traversal time.

The performance problem of bounding interval hierar-
chies in such a scenario can be spotted by the example of
the BART robots (see figure 7). The scene is made up of
large triangles for the streets and houses, but also features a
lot of finer geometry like signs or the walking robots. As the
large triangles cause large overlapping volumes in the hier-
archy, an early pruning of the tree becomes impossible and
more triangles per ray have to be tested.

The classic workaround in a rendering system is to sub-
divide large objects beforehand. In order to moderately in-
crease memory, the objects should be divided by planes per-
pendicular to the canonical axis. While the memory con-
sumption now increases similar to the kd-tree, it is still pos-
sible to a priori determine memory consumption.

As our approach is intended for production systems with
displacement mapping and lots of geometric detail, the
above discussion does not impose problems. In fact the prob-
lem only persists for low-polygon-count architectural sce-
narios and even older games already use 200,000 to 500,000
visible triangles per frame.

5. Concluding Remarks

We presented new concepts to accelerate ray tracing espe-
cially when used in fully dynamic environments or for mas-
sive data sets. Both the memory footprint and construction
time of our new data structure are much smaller as compared
to previous approaches. For the first time the fast construc-
tion allows for realtime ray tracing of dynamic content with-
out restrictions to the geometry [WBS06]. It also enables
the much more efficient computation of motion blur [Kel03].
The simplicity and predictability of the algorithm along with
its global heuristic make it a premier candidate for a hard-
ware implementation.

It is worth to mention that building kd-trees based on the
global heuristic from section 3.3.1 results in a frame rate
similar to the highly optimized kd-tree implementation used
for the measurements.

First experiments using the bounding interval hierarchy
with free form surfaces were very promising. We also ex-
tended the data structure from section 3.1 to represent a com-
plete left and right interval instead of only clipping inter-
vals. While the tree becomes even flatter the memory con-
sumption is almost identical due to the required four floats
per node. In addition the time complexity of the sequential
software implementation is almost identical, too. However, a
hardware implementation could benefit from the flatter trees.

Acknowledgements

The authors would like to thank mental images GmbH for
support and for funding of this research. Thanks to David
Kasik from The Boeing Company for providing the Boeing
777 model data. The BRDF data are courtesy of SpheronVR
AG. The Quake II original source is available from id soft.

References
[Ben06] BENTHIN C.: Realtime Ray Tracing on current CPU Ar-

chitectures. PhD thesis, Saarland University, 2006.

[Bik05] BIKKER J.: Interactive Ray Tracing. Intel Software Net-
work (2005).

[FP93] FOURNIER A., POULIN P.: A Ray Tracing Accelerator
Based on a Hierarchy of 1D Sorted Lists. In Graphics Interface
’93 (1993), pp. 53–61.

[Gla89] GLASSNER A.: An Introduction to Ray Tracing. Aca-
demic Press, 1989.

[GM03] GEIMER M., MÜLLER S.: A Cross-Platform Frame-
work for Interactive Ray Tracing. Graphiktag im Rahmen der
GI Jahrestagung, Frankfurt am Main (2003).

[GS87] GOLDSMITH J., SALMON J.: Automatic Creation of Ob-
ject Hierarchies for Ray Tracing. IEEE Computer Graphics and
Applications 7, 5 (May 1987), 14–20.

[Hal99] HALL D.: The AR250-A new Architecture for Ray
Traced Rendering. In Proceedings of the Eurographics/SIG-
GRAPH workshop on Graphics hardware-Hot Topics Session
(1999), pp. 39–42.

c� The Eurographics Association 2006.

Carsten Wächter & Alexander Keller / Instant Ray Tracing: The Bounding Interval Hierarchy

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Czech Technical University, Praha, Czech Republic, April
2001.

[Kel98] KELLER A.: Quasi-Monte Carlo Methods for Photoreal-
istic Image Synthesis. PhD thesis, Shaker Verlag Aachen, 1998.

[Kel03] KELLER A.: Strictly Deterministic Sampling Methods
in Computer Graphics. SIGGRAPH 2003 Course Notes, Course
#44: Monte Carlo Ray Tracing (2003).

[KK86] KAY T., KAJIYA J.: Ray Tracing Complex Scenes. In
Proceedings of SIGGRAPH 86 (Aug. 1986), vol. 20/4, pp. 269–
278.

[MR95] MOTWANI M., RAGHAVAN P.: Randomized Algorithms.
Cambridge University Press, 1995.

[RSH00] REINHARD E., SMITS B., HANSEN C.: Dynamic Ac-
celeration Structures for Interactive Ray Tracing. In Proceedings
of the Eurographics Workshop on Rendering Techniques (2000),
pp. 299–306.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-
Level Ray Tracing Algorithm. ACM Transactions on Graphics
24, 3 (2005), 1176–1185.

[RW80] RUBIN S., WHITTED J.: A 3-dimensional representa-
tion for fast rendering of complex scenes. In Computer Graphics
(Proceedings of SIGGRAPH 80) (1980), vol. 14, pp. 110–116.

[SBB∗06] STEPHENS A., BOULOS S., BIGLER J., WALD I.,
PARKER S.: An Application of Scalable Massive Model Inter-
action using Shared Memory Systems. In Proceedings of the Eu-
rographics Symposium on Parallel Graphics and Visualization
(2006). To appear.

[Shi00] SHIRLEY P.: Realistic Ray Tracing. AK Peters, Ltd.,
2000.

[Wal04] WALD I.: Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Saarland University, 2004.

[WBS06] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics (2006). To appear.

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An Inter-
active Out-of-Core Rendering Framework for Visualizing Mas-
sively Complex Models. In Proceedings of the Eurographics
Symposium on Rendering (2004), pp. 81–92.

[WH06] WALD I., HAVRAN V.: On building fast kD-trees for
Ray Tracing, and on doing that in O(N log N). Technical Report,
SCI Institute, University of Utah, No UUSCI-2006-009 (2006).

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER
S.: Ray Tracing Animated Scenes using Coherent Grid Traver-
sal. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2006) (2006). To appear.

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive
Distributed Ray Tracing of Highly Complex Models. In Render-
ing Techniques 2001 (Proceedings of the 12th EUROGRAPHICS
Workshop on Rendering) (2001), S.J.Gortler, K.Myszkowski,
(Eds.), Springer, pp. 277–288.

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.: RPU: A
Programmable Ray Processing Unit for Realtime Ray Tracing.
ACM Transactions on Graphics 24, 3 (2005), 434–444.

c� The Eurographics Association 2006.

