01418585
Rendering and Shading Technigues

Lecture 01




Administrivia




About

e This course Is a survey course on rendering algorithms.
e You are expected to implement some of them.
e The aims of the course are:

e To equip you with knowledge for future research.

¢ o develop your programming sKkills.




Instructor

e Pramook Khungurn

¢ Email: pramook@gmail.com or fscipmk@ku.ac.th

e Cellphone: 08-5453-5857

e Office: Numberless room in front of the Department’s office

e Office Hour: Wednesday & Friday 1PM - 4PM or by appointment



mailto:pramook@gmail.com
mailto:pramook@gmail.com
mailto:fscipmk@ku.ac.th
mailto:fscipmk@ku.ac.th

Grading

e Homework: 60%

e Final Project: 40%

e No exams.




Requirement

e You should be fluent in C++ (not C).

¢ You should know:

e | inear algebra

e Calculus

e Probability theory (esp. random variables)




B00ksS

e Kevin Suffern.
Ray Tracing from the Ground Up.
A K Peters, 2009.

e Required

¢ Since there will be few students,
please order a copy yourself
from Amazon or local
bookstores.

Ray Tracing
from the
Ground Up

e Y

— - ———
[———
R —

_

——— e

Revin Suﬁern



B00ksS

e Not required

e Matt Pharr and Greg Humphreys.
Physically Based Rendering: From Theory to Implementation.
Elsevier, 2004.

e Philip Dutre, Kavita Bala, and Philippe Bekaert.
Advanced Global lllumination.
A K Peters, 2006.

¢ Henrik Wann Jensen.
Realistic Image Synthesis Using Photon Mapping.
A K Peters, 2009




Web Page

e http://theory.cpe.ku.ac.th/~pramook/418585/

¢ Please check it frequently for:

e Slides

e Homeworks

¢ | don’t distribute printouts of slides in class.



http://theory.cpe.ku.ac.th/~pramook/418585/
http://theory.cpe.ku.ac.th/~pramook/418585/

Academic Honesty Policy

e You shall do all of your homework by yourself.

e Type your programs yourself.

e Do not plagiarize.

e Do not copy from your friend or internet sources.

e |f you do, you will earn no credits for the assignment.

e However, feel free to collaborate and consult the internet for ideas.

® Please also indicate where you get your ideas from in your hand-ins.




Rendering



Rendering

e The process of generating images from models.

o446 —-13. 3601
0027 —5. 00698
302 1. 3497
. 1098 9. 6773
2049 —-10. 7724
2118 —10. 9210
9015 -5, 4622
. 7194 —6. 8070
. 20l8 —18. 0720
. 0318 —16. 3400
. 1024 —-17. 4600
. 8601 —20. 9840
. 6469 —25. 0268
7415 -5, 4070
. 0937 —5. 3074
1462 -9, 0742
4861 -8, 2045
. 6262 -9, 3695 ttp://en.wikipedia.org/wiki/Global_llumination
.8o0ll —4. 1244




lmages

e Rectangular array of squares colors.

e Each square is call a pixel (picture element).

http://en.wikipedia.org/wiki/Pixels




Colors

e A vector (R,G,B)

e R, G, B are real numbers
ranging from O to 1

® They are intensities of the
red, green, and blue
channel, respectively.

ProPhoto RGB

Adobe RGB

sRGB

2200 Matt Paper

\

Horseshoe Shape of Visible Color




Important Colors and Their RG

Representation




Gamut

* The range of color a display
device can display accurately.

e Namely, all the colors that gets
displayed when you set R, G,
and B to various values in
range [0,1]

0.9,

0.8+

0.71
0.6
0.5

y
0.41
0.3

0.2

0.1-

0.0 - 386 - - - . : .
0.0 0.1 02 03 04 05 06 07 08

X
http://upload.wikimedia.org/wikipedia/commons/d/d3/ClExy1931 _srgb _gamut.pn



http://upload.wikimedia.org/wikipedia/commons/d/d3/CIExy1931_srgb_gamut.png
http://upload.wikimedia.org/wikipedia/commons/d/d3/CIExy1931_srgb_gamut.png

Models

e Mathematical representation of
e Shapes

e Optical characteristic of
surfaces.

L

http://amber.rc.arizona.edu/dx/vtkDecimateDX.html

e

http://en.wikipedia.org/wiki/Nurbs




Photorealistic Rendering

http://en.wikipedia.org/wiki/Rendering




Photorealistic Rendering

QAAATA) 0 0 0 o

-

The Legend of Zelda: The Wind Waker
http://en.wikipedia.org/wiki/Toon_shading




Lighting: Diffuse Reflection

Surface Color Diffuse Shading
Point Light Source

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Lighting: Shadows

No Shadows Shadows
Point Light Source Point Light Source

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Lighting: Soft Shadows

Hard Shadows Soft Shadows
Point Light Source Area Light Source

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Lighting: Radiosity

Soft Shadows Inter-reflection, Diffuse)
Area Light Source Area Light Source

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Early Radiosity

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Early Diffuse+Glossy

Tribute to Vermeer
Program of Computer Graphics, Cornell

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Caustics

Jensen 1995

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Complex Indirect lllumination

Mies Courtyard House with Curved Elements

Modeling: Stephen Duck; Rendering: Henrik Wann Jensen
CS348B Lecture 1 Pat Hanrahan, Spring 2007




Translucency

Surface Reflection Subsurface Reflection

CS348B Lecture 1 Pat Hanrahan, Spring 2007




Rendering Algorithms




SIGGRAPH2005

Introduction to

Realtime Ray Tracing

Course 41

Philipp Slusallek Peter Shirley
Gordon Stoll

Bill Mark

Ingo Wald

~
B

P
R,

A L}\‘q\‘ i

ST

) o\ .
AT SR
IRy

DAR AN N
S T RN BN




Z,

Rendering Algorithms SIGGRAPH2005

Rendering In
Computer Graphics

dY

/
\% ' \4 ]

Rasterization: Ray Tracing:
Projection geometry forward Project image samples backwards




Current Technology:
Rasterization

Z,

SIGGRAPH2005

» Rasterization-Pipeline
—Highly successful technology

—From graphics supercomputers to
an add-on in a PC chip-set

» Advantages
—Simple and proven algorithm
—Getting faster quickly
—Trend towards full programmability




Z,

SIGGRAPH2005

Current Technology:
Rasterization

HEEEEEEEEEEE
HEEEEEEEEEEE
LN
HEEEVANEEEEE
AN |
HEFSESNNEEEN
HV/SENSNEEN
’ﬂlllll‘ll
/

[\
HEEEE_ NN

||
||
-
HEC=asEEENEE

* Primitive operation of all interactive graphics !
—Scan converts a single triangle at a time

» Sequentially processes every triangle individually
—Cannot access more than one triangle at a time

=» But most effects need access to the entire scene:
Shadows, reflection, global illumination



Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

SIGGRAPH2005

What is Ray Tracing?
Traversal

> N

v




What is Ray Tracing?
Traversal

Z,

SIGGRAPH2005

JEiEn A X

v




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

IGGR
S

?
g

In

Trac

y

a

R

IS

t

ha

")}




Z,

What is Ray Tracing? SIGGRAPH2005

- Global effects

Lightsource

- Paralel (as nature)

- Fully automatic

- Demand driven

- Per pixel operations

- Hignly efficient

= Fundamental Technology for Next Generation Graphics



Z,

SIGGRAPH2005

Comparison
Rasterization vs. Ray Tracing

e Definition: Rasterization

Given a set of rays and a primitive, efficiently
compute the subset of rays hitting the primitive

 Definition: Ray Tracing

Given a ray and set of primitives, efficiently compute
the subset of primitives hit by the ray



Z,

SIGGRAPH2005

Comparison
Rasterization vs. Ray Tracing

* Hardware Support

—Rasterization has mature & quickly evolving HW
* High-performance, highly parallel, stream computing engine

—Ray tracing mostly implemented in SW
* Requires flexible control flow, recursion & stacks, flexible i/o, ...
* Requires virtual memory and demand loading due scene size
* Requires loops in the HW pipeline (e.g. generating new rays)
* Depend heavily on caching and suitable working sets

= Not well supported by current HW



Z,

SIGGRAPH2005

Reasons for Using
Ray Tracing

* Physical Correctness and Dependability

—Numerous approximations caused by rasterization
—Might be good enough for games (but maybe not?)
—Industry needs dependable visual results

* Benefits
—Users develop trust in the visual results
—Important decisions can be based on virtual models



Z,

Reasons for Ray Tracing:
Physmal Correctness SIGGRAPHER

v_..-.ow.

‘)‘h }

4
1osbend ™y

Fully ray traced car head lamp, fithful visualization requires up to 50 rays per pixel



Z,

SIGGRAPH2005

Reasons for Ray Tracing:
Physical Correctness

Rendered directly from trimmed NURBS surfaces, with smooth environment lighting



Reasons for Ray Tracing: @
Physica| Correctness SIGGRAPH2005

Textured Phong for
comparison

— ]

\“\“hi\\ \}‘::‘Phq‘l Pl hn;;

Rendered with accgrate!y m_easured BTF data “\“\““‘N’W — :

that accounts for micro lighting effects

BTF Data Courtesy R. Kleln Um Bonn



Z,

SIGGRAPH2005

Reasons for Ray Tracing:
Physical Correctness

‘ll -

|

,,,,,

3 (SR

7 s P Al AR BN i el i IGRIER S\ N\ SR NS
VR scene illuminated from realtime video feed, AR with realtime environment lighting



Z,

SIGGRAPH2005

Reasons for Ray Tracing:
Massive Models

 Massive Scenes

—Scales logarithmically with scene size
—Supports billions of triangles

* Benefits

—Can render entire CAD models without simplification
—Greatly simplifies and speeds up many tasks



Reasons for Ray Tracing
Massive Models

SIGGRAPH2005




Reasons for Ray Tracing:
Flexible Primitive Types

Z,

SIGGRAPH2005

* Flexible Primitive Types
—Triangles
—\Volumes data sets

e |so-surfaces & direct visualization

e Regular, rectilinear, curvilinear, unstructured, ...

—Splines and subdivision surfaces
—Points



Reasons for Ray Tracing:

Flexible Primit

Z,

SIGGRAPH2005

ive Types

S

Triangle, Bezier splines, and subdivision surfaces fully integrated




Z,

SIGGRAPH2005

Reasons for Ray Tracing:
Flexible Primitive Types

—— —
i

Volume visualization using multiple iso-surfaces in combination with surface rendering



Z,

SIGGRAPH2005

Reasons for Ray Tracing:
Flexible Primitive Types

24 MPoints, 2.1 fps with shadow @ 640x480

Realtime ray tracing of point clouds (1 Mpoints each) \
On one dual-Opteron 2.4 GHz: 4-9 fps =



Z,

SIGGRAPH2005

Reasons for Ray Tracing:
Declarative Graphics

* Declarative Graphics Interface

—Application specifies scene once, plus updates
—Rendering fully performed by renderer (e.g. in HW)
—Similar to scene graphs, PostScript, or latest GUIs

* Benefits
—Greatly simplifies application programming
—Allows for complete HW acceleration



Reasons for Ray Tracing: g

SIGGRAPH2005

Declarative Graphics

X4 5.970 fps




SIGGRAPH2005

ive Graphics

O)
=
O
(O
-
—
>
o
e
-
O
(T
)
c
O
7))
(©
QD
4

Declarat




Z,

SIGGRAPH2005

Reasons for Ray Tracing:
Global lllumination

* Global lllumination

—Simulating global lighting through tracing rays
—Indirect diffuse and caustic illumination
—Fully recomputed at up to 20 fps

* Benefits
—Add the subtle but highly important clue for realism
—Allows flexible light planning and control



Z,

SIGGRAPH2005

Reasons for Ray Tracing:

Global lllumination

‘.

Conference room (380 000 tris, 104 lights) with full global illumination in realtime



Reasons for Ray Tracing:
Global lllumination

260k / 3 fos 26M /11 fos

Light pattern from a car head lamp computed in realtime using photon mapping:
Left: realtime update, middle: accumulated in 30s, right: photograph of real pattern




D Vectors



Computer Graphics

CSE167: Computer Graphics
Instructor: Ronen Barzel
UCSD, Winter 2006




Coordinate Systems

® Right handed coordinate systems

Z

® (more on coordinate systems next class)




Vector Arithmetic




Vector Magnitude

® The magnitude (length) of a vector is:
v =+ Vo + V)

V=V + v+
V] = v + v+

® A vector with length=1.0 is called a unit vector

®\We can also normalize a vector to make it a unit
vector: vV

v




Dot Product

a-b=Eaibi

a‘b=ab +ab, +ab,

a-b = |a||b|cosO




Dot Product
a-b= Eaibi

a‘b=ab +ab, +apb,

a-b = [ax a, az]

ab=a'b

a-b = |a||b|cosO




Example: Angle Between Vectors

®How do you find the angle 6 between vectors
aandb?




Example: Angle Between Vectors

a-b = |a||b|cosf
[a-b )
a[[b))

[ a-b)
6 = Ccos
Ja][b])

COSH:k




Dot Product Properties

® The dot product is a scalar value that tells us
something about the relationship between two
vectors

ulf a-b>0 then 6 <90°
* Vectors point in the same general direction
ulf a-b<0 then 6 >90°
» Vectors point in opposite direction
ulf a-b=0 then 6 =90°
* Vectors are perpendicular
» (or one or both of the vectors is degenerate (0,0,0))




Dot Products with One Unit Vector

m|f lul=1.0 then a-u is the length of the projection of a
onto u




Dot Products with Unit Vectors

al=|b[=10
a-b =cos(0)




Cross Product




Properties of the Cross Product

a x b is a vector perpendicular to both a
and b, in the direction defined by the
right hand rule

axb|= ‘aHb‘sinG

a x b| = area of parallelogram ab

ax bl =0 ifaand b are parallel
(or one or both degenerate)




Example: Align two vectors

®\We are heading in direction h. We want to rotate so
that we will align with a different direction d. Find a
unit axis a and an angle 6 to rotate around.




Example: Align two vectors

- hxd

‘hxd‘
ol [hxd)
 [hlld]

0 = cos"l/ h-d )
([nlal)

‘hxd‘
v
theta = atanZ(‘h x d, h-d)

a

0 = tan™ (




Float3 Structure

struct Float3
{

union
{
float d[3];
struct { float x, y, z; };
struct { float r, g, b; };
struct { float s, t, u; };
struct { float alpha, beta, gamma; };




Float3 Structure

struct Float3
{

Float3();

Float3(float c);

Float3(int 1);

Float3(double x);

Float3(float x, float y, float z);

const float &operator[]J(int 1) const
{ return d[1]; }

float &operator[](int 1)
{ return d[1]; }




Float3 Structure

struct Float3

{

Float3 &operator +=
{ FOR(1,3) d[1]
Float3 &operator -=
{ FOR(1,3) d[1]
Float3 &operator *=
{ FOR(1,3) d[1]
Float3 &operator *=
{ FOR(1,3) d[1]
Float3 &operator /=
{ FOR(1,3) d[1]
Float3 &operator /=
{ FOR(1,3) d[1]

(const Float3 &x)

+= x[1]; return *this;
(const Float3 &x)

-= x[1]; return *this;
(const Float3 &x)

*= x[1]; return *this;
(const float &x)

*= Xx; return *this;
(const Float3 &x)

/= x[1]; return *this;
(const float &x)

/= X; return *this;

¥
h
¥




Float3 Structure

struct Float3

{

Float3 operator + (const Float3 &x) const

{ return Float3(d[0@] + x[0], d[1] + x[1], d[2] + x[2]);
Float3 operator - () const

{ return Float3(-d[0], -d[1], -d[2]); }
Float3 operator - (const Float3 &x) const

{ return Float3(d[0@] - x[@], d[1] - x[1], d[2] - x[2]);
Float3 operator * (const Float3 &x) const

{ return Float3(d[@] * x[0], d[1] * x[1], d[2] * x[2]);
Float3 operator * (float x) const

{ return Float3(d[0@]*x, d[1]*x, d[2]*x); }
Float3 operator / (const Float3 &x) const

{ return Float3(d[0] / x[@], d[1] / x[1], d[2] / x[2]);
Float3 operator / (float x) const {

float inv = 1.0f / Xx;

return Float3(d[@] * inv, d[1] * inv, d[2] * inv);




Float3 Structure

struct Float3
{

float length_squared() const

{
return d[@]*d[0] + d[1]*d[1] + d[2]*d[2];
}

float length() const

{
return sqrtf(length_squared());

}




Float3 Structure

inline Float3 normalize(const Float3 &v)

{
return v / v.length(Q);

¥

inline Float3 operator*(float f, const Float3 &v)
{

return v*f;

}

inline float dot(const Float3 &vl, const Float3 &v2)
{

return vl.x * v2.x + vl.y * v2.y + vl.z * v2.z;

}

inline Float3 cross(const Float3 &vl, const Float3 &v2)
{
return Float3((vl.y * v2.z) - (vl.z * v2.y),
(vli.z * v2.x) - (vl.x * v2.2),
(vli.x * v2.y) - (vl.y * v2.x));




—lementary

Ray [racer




Projection

* Models are 3D, but images are 2D.

e The process of converting 3D to 2D is called projection.

e Typically, computer graphics apps use two kinds of projections.

e Orthographic Projection

e Perspective Projection

e \We will use orthographic projection here.




Orthographic Projection

e Pixels are on an image plane.

e Rays are perpendicular to the plane.

e | acks foreshortening --- further objects do not get smaller.

e Used in design/architectural drawings, where precision is important.

e Human eyes do not see this way.




Orthographic Projection

e

rd

-~

e

T
P

Ty

T
g

http://www2.arts.ubc.ca/TheatreDesign/crslib/drft_1/orthint.htm




Orthographic Projection

FRONT VIEW

ISOMETRIC VIEW

WOOD STOVE
ol SCALE 1" = 1'- 0"
RG 1999
STOVE PLAN VIEW

@copyright Robert Gardiner

http://www?2.arts.ubc.ca/TheatreDesign/crslib/drft_1/cad/wdstv.htm




Orthographic vs Perspective

orthographic perspective




Defining Orthographic Projection

¢ \We need six parameters

e |left, right: bounds in x-axis

e top, bottom: bounds in y-axis

e hither (near), yon (far): bounds in z-axis

¢ This define a prism inside which are the things we see.




Orthographic

Ieft—ﬁp

. e

the
vewpoint

viewing volume




Ray

e Basically, it’s a half line.
e Begins at a point called the origin.
e Extends towards infinity in a given direction.
e For simplicity, direction should always be a unit vector.
¢ | et the origin be denoted by o and let the direction be denoted by d.

e Then, a ray is a set of the following points:

{o+td:te€|0,00]|}







Ray

struct Ray

{

+s

Float3 origin;
Float3 direction;
float tmin;

float tmax;

Ray(const Float3 &_origin = Float3(0,0,0),
const Float3 &_direction = Float3(0,0,1),
float _tmin = 0,
float _tmax = INFINITY);

~Ray();

inline Float3 operator() (float t) const
{

return origin + direction * t;

}




Ray

e tmin
® The time the ray starts
e Typically O or a very small value, say 0.00001.

e \We use 0.00001 because we want to avoid the case where the view plane
IS on the surface of something

e {max
® The time the ray stops.
® The time it hits something.

e |nitially, infinity.

e Set of points (revisited)

{o+td :




Camera

® Responsible for generating rays.

¢ | et’s define image plane to be the rectangle

{(z,y): —1< 2,y <1}

e A camera maps (x,y) from the image plane to a ray.

e class Camera

{
public:

Camera();
virtual ~Camera();

virtual Ray gen_ray(float sx, float sy) const = 0;
¥




Orthographic Camera

e Needs 6 parameters: left, right, bottom, top, hither, yon

e class OrthographicCamera : public Camera
{
public:
OrthographicCamera(
float _left,
float _right,
float _bottom,
float _top,
float _hither = RAY_EPSILON,
float _yon = INFINITY);
virtual ~OrthographicCamera();
virtual Ray gen_ray(float sx, float sy) const;

public:
float left, right, bottom, top, hither, yon;

+s




Orthographic Camera

* Image plane is the xy-plane.

e S0 the ray must travel along the z-axis.

e Orthographic camera generates rays that travels in the negative-z direction

 Ray OrthographicCamera: :gen_ray( float sx, float sy ) const

{
sx = 0.5f + sx / 2;

sy = 0.5f + sy / 2;

float x = left + (right - left) * sx;
float y = bottom + (top - bottom) * sy;

return Ray(Float3(x,y,hither), Float3(0,0,-1), 0.00001f, yon-hither);




Ray-0Object Intersection

® |n a scene, there are several objects.

e For each ray, we have to find the nearest object that the ray hits.

e But the hit time t must be greater than O.




Ray-0Object Intersection

® = ray origin
® = hit point with t > 0

. @ = hit point with t < 0
view plane




Geometric Shapes

e They are models of objects in the scene.

e Each object must be able to

e Tell if a ray intersects it

e Compute the time of intersection

¢ |n this lecture, each object has one color.

e \We're going work with two more sophisticated models later.




Class Shape

e class Shape

{
public:

Shape(const Float3 &_color);
virtual ~Shape();
virtual bool intersect_p(Ray &ray) = 0;
Float3 color;
¥
® intersect_p
e Return true if the given ray intersects the shape.

e Modify the ray’s tmax to the intersection if intersection occurs.




Definitions of Sets

¢ A set can be defined in two ways.
e Explicitly: As the set of images of a functions of free variables.
e Aline can be defined as {o+td:t € R}
e A unit circle can be defined as {(cosf,sin®) : 0 € |0,2m)}
e Implicitly: As the set that satisfies a certain conditions.
e A line can be defined as {(x,y) : Ax + By + C = 0}

e A unit circle can be defined as {(z,y) : * +¢* = 1}




Implicit Definition

e Typically, implicit definitions has a function f that takes in a point and
produces a real number.

e Implicit surface is defined as all points at which the function evaluates to 0.
e |f the value is greater than O, the point is said to be outside.

e |f the value is less than 0, the point is said to be inside.




Definition of Sets in Computer Graphics

¢ \We define rays explicitly.
e \We define shapes implicitly.
e \Why? Because it helps with ray-shape intersection.

e Say, we have a shape defined as {p: f(p) = 0}
And we want to intersect it with ray {0 +td : tmin <t < tmax}

e \\Ve just have to solve the following equation for t:

flo4+1td)=0

e Then we can decide whether t is in range or not.




Plane

¢ |Infinite flat sheet of points.

e Defined by

e A point a

e Normal vector n

e Plane is the set of points p such that the vector from a to p is perpendicular
to the normal.

{p:(p—a) -n=0}




Plane Class

class Plane : public Shape

{

public:
Plane(const Float3 &_point, const Float3 &_normal, const Float3 &_color);
virtual ~Plane();
virtual bool intersect_p(Ray &ray);

public:
Float3 point;
Float3 normal;

¥

e Here, the field “point” is the point a on the plane.
And the field “normal” is the normal vector n.




Ray-Plane Intersection

e \We substitute p with o 4+ td in the plane’s equation:
(o+td—a) n=0

e Solving for t, we have

(a—o0)-n
d-n

t —




Ray-Plane Intersection

bool Plane::intersect_p( Ray &ray )

{

float A = dot(ray.origin, normal);
float B = dot(ray.direction, normal);
float C = dot(point, normal);

float t = (C - A) / B;

1f (t >= ray.tmin && t < ray.tmax)
{
ray.tmax = t;
return true;
by
else
return false;




Sphere

e A set of points that are of a constant from a point called the center (c).
e The constant distance is called the radius (r).

e Set of points:
{p:lp—c|=r}
p:(p—c) (p—c)=r7}
* However, if we say that ¢ — (¢, Cys Cz) then the above definition becomes:

{(z,y,2) : (x — Cw)2 + (y — Cy)2 + (2 — Cz)2 = T2}




Sphere Class

class Sphere : public Shape

{

public:
Sphere(const Float3 &_center, float _radius, const Float3 &_color);
virtual ~Sphere();
virtual bool intersect_p(Ray &ray);

public:
Float3 center;
float radius;

¥




Ray-Sphere Intersection

e Substituting o + td into the second set definition yields:
(o+td—c) - (o+td—c)—r*=0
e Expanding, we have
(d-d)t* +[2(o0—c)-d]t+(o—c)-(o—c)—7r*=0

e The above equation is a quadradic equation at® + bt + c = 0 where
e a=d-d
e b=20—-c)-d

e c=(0—c)-(0—c)—r?




Ray-Sphere Intersection

e \\le can solve the quadratic equation and get

b+ Vb2 — dac
N 2a

e The discriminant d = b* — 4ac tells us how the ray intersects the sphere.
fd < 0, the ray doesn’t intersect the sphere.

f d = 0, the ray intersects the sphere at only one point.

fd > 0, the ray intersects the sphere at two points.




Ray-Sphere Intersection

ray 1 &—>» » zero intersections: d < 0

ray 2 &—>» /0\ > one intersection: d =0

ray 3 &—>» 6 ® » two intersections: d > 0

N




Ray-Sphere Intersection

e After computing t, we're not done. We have to find the least non-negative t.

zero intersections with £ > 0O
zero intersections with £t > 0
» one intersection with ¢t > 0

one intersection with £t > 0O




Ray-Sphere Intersection

bool Sphere::intersect_p( Ray &ray )

{
float t;
Float3 temp = ray.origin - center;
float a = dot(ray.direction, ray.direction);
float b = 2 * dot(temp, ray.direction);
float ¢ = dot(temp, temp) - radius * radius;
float disc = b*b - 4*a*c;

1f (disc < 0.0f)
return false;




Ray-Sphere Intersection

else

{
float e = sqrtf(disc);
float denom = 2.0f * a;
t = (-b - &) / denom;

1f (t >= ray.tmin && t < ray.tmax)
{

ray.tmax = t;

return true;

}

t = (-b + e) / denom;
1f (t >= ray.tmin && t < ray.tmax)
{
ray.tmax = t;
return true;
¥
else
return false;




Scene

e A scene is a combination of two things.

e A number of shapes.

e The camera.

class Scene

{

public:
Scene(Camera *_camera = NULL);
virtual ~Scene();

public:
Camera *camera;
std: :vector<Shape *> shapes;

s




Rendering a Scene

e Pseudocode:

For row = @ to image_width-1 do
For col = @ to image_height-1 do

1. Convert (row,col) to (X,y) where -1 <= x,y <=1
2. Use camera to generate ray from (Xx,y)
3. Find the first object the ray intersects

4. Record the color of the object to the 1image




Rendering a Scene

FOR(1y, image_height)
FOR(ix, image_width)
{

float sx = 2 * (1x + 0.5f) / image_width - 1;
float sy = 2 * (1y + 0.5f) / image_height - 1;

Ray ray = scene.camera->gen_ray(sx, Sy);

Shape *hitted_shape = NULL;
FOR(shape_1index, shape_count)
{

Shape *shape = scene.shapes[shape_index];

1f (shape->intersect_p(ray))
hitted_shape = shape;
}

1f (hitted_shape '= NULL)

image[ix, 1y] = hitted_shape->color;

else

image[1x, 1y] = background_color;



