## 01418585 <br> Rendering and Shading Techniques

Lecture 01

Administrivia

## About

- This course is a survey course on rendering algorithms.
- You are expected to implement some of them.
- The aims of the course are:
- To equip you with knowledge for future research.
- To develop your programming skills.


## Instructor

- Pramook Khungurn
- Email: pramook@gmail.com or fscipmk@ku.ac.th
- Cellphone: 08-5453-5857
- Office: Numberless room in front of the Department's office
- Office Hour: Wednesday \& Friday 1PM - 4PM or by appointment


## Grading

- Homework: 60\%
- Final Project: 40\%
- No exams.


## Requirement

- You should be fluent in C++ (not C).
- You should know:
- Linear algebra
- Calculus
- Probability theory (esp. random variables)


## Books

- Kevin Suffern.

Ray Tracing from the Ground Up. A K Peters, 2009.

- Required
- Since there will be few students, please order a copy yourself from Amazon or local bookstores.


Heuin Suffern

## Books

- Not required
- Matt Pharr and Greg Humphreys.

Physically Based Rendering: From Theory to Implementation. Elsevier, 2004.

- Philip Dutre, Kavita Bala, and Philippe Bekaert.

Advanced Global Illumination.
A K Peters, 2006.

- Henrik Wann Jensen.

Realistic Image Synthesis Using Photon Mapping.
A K Peters, 2009

## Web Page

- http://theory.cpe.ku.ac.th/~pramook/418585/
- Please check it frequently for:
- Slides
- Homeworks
- I don't distribute printouts of slides in class.


## Academic Honesty Policy

- You shall do all of your homework by yourself.
- Type your programs yourself.
- Do not plagiarize.
- Do not copy from your friend or internet sources.
- If you do, you will earn no credits for the assignment.
- However, feel free to collaborate and consult the internet for ideas.
- Please also indicate where you get your ideas from in your hand-ins.


## Rendering

## Rendering

- The process of generating images from models.

| 40.3765 | 246.3446 | -13.3601 |
| :--- | :--- | :--- |
| 41.7488 | 226.0027 | -5.0658 |
| 48.3294 | 235.3752 | -7.3497 |
| 37.2949 | 230.1558 | -9.6773 |
| 46.8526 | 239.2049 | -10.7724 |
| 35.0925 | 232.2118 | -10.9210 |
| 49.2234 | 231.9015 | -5.4622 |
| 39.5274 | 227.7154 | -6.8570 |
| 36.7923 | 240.2518 | -18.0725 |
| 40.9546 | 241.5318 | -16.3400 |
| 53.2942 | 227.1024 | -17.4600 |
| 51.4157 | 231.8651 | -20.9840 |
| 45.7685 | 234.6469 | -25.0268 |
| 32.3952 | 239.7475 | -5.4070 |
| 36.2495 | 235.5937 | -5.3574 |
| 31.0568 | 236.1462 | -9.5742 |
| 34.1015 | 253.4861 | -8.2545 |
| 31.5805 | 251.6262 | -9.3695 |
| 33.9048 | 256.8511 | -4.1244 |


http://en. wikipedia.org/wiki/Global_illumination

## Images

- Rectangular array of squares colors.
- Each square is call a pixel (picture element).

http://en.wikipedia.org/wiki/Pixels


## Colors

- A vector ( $\mathrm{R}, \mathrm{G}, \mathrm{B}$ )
- R, G, B are real numbers ranging from 0 to 1
- They are intensities of the red, green, and blue channel, respectively.



## Important Colors and Their RGB Representation



## Gamut

- The range of color a display device can display accurately.
- Namely, all the colors that gets displayed when you set R, G, and $B$ to various values in range $[0,1]$



## Models

- Mathematical representation of
- Shapes
- Optical characteristic of surfaces.

http://amber.rc.arizona.edu/dx/vtkDecimateDX.html

http://en.wikipedia.org/wiki/Nurbs


## Photorealistic Rendering


http://en.wikipedia.org/wiki/Rendering

## Non-Photorealistic Rendering



The Legend of Zelda: The Wind Waker
http://en.wikipedia.org/wiki/Toon_shading

## Lighting: Diffuse Reflection



Surface Color


Diffuse Shading
Point Light Source

## Lighting: Shadows



No Shadows
Point Light Source

CS348B Lecture 1


Shadows Point Light Source

Pat Hanrahan, Spring 2007

## Lighting: Soft Shadows



Hard Shadows
Point Light Source


Soft Shadows
Area Light Source
Pat Hanrahan, Spring 2007

## Lighting: Radiosity



## Soft Shadows Area Light Source



Inter-reflection, Diffuse) Area Light Source

## Early Radiosity



## Early Diffuse+Glossy



Tribute to Vermeer
Program of Computer Graphics, Cornell

## Caustics



## Jensen 1995

## Complex Indirect Illumination



Modeling: Stephen Duck; Rendering: Henrik Wann Jensen

## Translucency



## Surface Reflection

CS348B Lecture 1


Subsurface Reflection
Pat Hanrahan, Spring 2007

## Rendering Algorithms

# Introduction to Realtime Ray Tracing 

## Course 41

Philipp Slusallek Peter Shirley
Bill Mark Gordon Stoll Ingo Wald


## Rendering Algorithms

## Rendering in Computer Graphics



Rasterization:
Projection geometry forward
Project image samples backwards

## Current Technology: Rasterization

- Rasterization-Pipeline
-Highly successful technology
-From graphics supercomputers to an add-on in a PC chip-set
- Advantages
-Simple and proven algorithm
-Getting faster quickly
-Trend towards full programmability



## Current Technology: Rasterization



- Primitive operation of all interactive graphics !!
-Scan converts a single triangle at a time
- Sequentially processes every triangle individually
- Cannot access more than one triangle at a time
$\rightarrow$ But most effects need access to the entire scene:
Shadows, reflection, global illumination


## What is Ray Tracing?



## What is Ray Tracing?



## What is Ray Tracing?



## What is Ray Tracing? Traversal




## What is Ray Tracing? Traversal



## What is Ray Tracing?



Framebuffer

## What is Ray Tracing?



- Global effects
- Parallel (as nature)
- Fully automatic
- Demand driven
- Per pixel operations
- Highly efficient
$\rightarrow$ Fundamental Technology for Next Generation Graphics


## Comparison Rasterization vs. Ray Tracing

- Definition: Rasterization

Given a set of rays and a primitive, efficiently compute the subset of rays hitting the primitive

- Definition: Ray Tracing

Given a ray and set of primitives, efficiently compute the subset of primitives hit by the ray

## Comparison Rasterization vs. Ray Tracing

- Hardware Support
-Rasterization has mature \& quickly evolving HW
- High-performance, highly parallel, stream computing engine
-Ray tracing mostly implemented in SW
- Requires flexible control flow, recursion \& stacks, flexible i/o, ...
- Requires virtual memory and demand loading due scene size
- Requires loops in the HW pipeline (e.g. generating new rays)
- Depend heavily on caching and suitable working sets
$\rightarrow$ Not well supported by current HW


## Reasons for Using Ray Tracing

- Physical Correctness and Dependability
-Numerous approximations caused by rasterization
-Might be good enough for games (but maybe not?)
-Industry needs dependable visual results
- Benefits
-Users develop trust in the visual results
-Important decisions can be based on virtual models


## Reasons for Ray Tracing: Physical Correctness

## SIGGRAPH2005



Fully ray traced car head lamp, faithful visualization requires up to 50 rays per pixel

## Reasons for Ray Tracing: Physical Correctness



Rendered directly from trimmed NURBS surfaces, with smooth environment lighting

## Reasons for Ray Tracing: Physical Correctness



BTF Data Courtesy R. Klein, Uni Bonn

## Reasons for Ray Tracing: Physical Correctness



VR scene illuminated from realtime video feed, AR with realtime environment lighting

## Reasons for Ray Tracing: Massive Models

- Massive Scenes
-Scales logarithmically with scene size
-Supports billions of triangles
- Benefits
-Can render entire CAD models without simplification
-Greatly simplifies and speeds up many tasks


# Reasons for Ray Tracing: Massive Models 



# Reasons for Ray Tracing: Flexible Primitive Types 

- Flexible Primitive Types
-Triangles
-Volumes data sets
- Iso-surfaces \& direct visualization
- Regular, rectilinear, curvilinear, unstructured, ...
-Splines and subdivision surfaces
-Points


## Reasons for Ray Tracing: Flexible Primitive Types



Triangles, Bezier splines, and subdivision surfaces fully integrated

## Reasons for Ray Tracing: Flexible Primitive Types



Volume visualization using multiple iso-surfaces in combination with surface rendering

## Reasons for Ray Tracing: Flexible Primitive Types



## Reasons for Ray Tracing: Declarative Graphics

- Declarative Graphics Interface
-Application specifies scene once, plus updates
-Rendering fully performed by renderer (e.g. in HW)
-Similar to scene graphs, PostScript, or latest GUIs
- Benefits
-Greatly simplifies application programming
-Allows for complete HW acceleration


## Reasons for Ray Tracing: Declarative Graphics



## Reasons for Ray Tracing: Declarative Graphics



## Reasons for Ray Tracing: Global Illumination

- Global Illumination
-Simulating global lighting through tracing rays
-Indirect diffuse and caustic illumination
-Fully recomputed at up to 20 fps
- Benefits
-Add the subtle but highly important clue for realism
-Allows flexible light planning and control


## Reasons for Ray Tracing: Global Illumination



Conference room (380 000 tris, 104 lights) with full global illumination in realtime

## Reasons for Ray Tracing: Global Illumination



25M / 11 fps


Photograph


Light pattern from a car head lamp computed in realtime using photon mapping: Left: realtime update, middle: accumulated in 30s, right: photograph of real pattern

3D Vectors

## Computer Graphics

CSE167: Computer Graphics Instructor: Ronen Barzel

UCSD, Winter 2006

## Coordinate Systems

- Right handed coordinate systems


- (more on coordinate systems next class)


## Vector Arithmetic

$$
\left.\begin{array}{rl}
\mathbf{a} & =\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \\
\mathbf{a}+\mathbf{b} & =\left[\begin{array}{l}
a_{x}+b_{x} \\
a_{y}+b_{y} \\
a_{z}+b_{z}
\end{array}\right] \\
b_{x} \\
b_{z}
\end{array}\right] \quad \mathbf{a}-\mathbf{b}=\left[\begin{array}{l}
a_{x}-b_{x} \\
a_{y}-b_{y} \\
a_{z}-b_{z}
\end{array}\right] .
$$

## Vector Magnitude

- The magnitude (length) of a vector is:

$$
\begin{aligned}
& |\mathbf{v}|^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2} \\
& |\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
\end{aligned}
$$

- A vector with length=1.0 is called a unit vector
- We can also normalize a vector to make it a unit vector:

$$
\frac{\mathbf{v}}{|\mathbf{v}|}
$$

## Dot Product

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=\sum a_{i} b_{i} \\
& \mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
& \mathbf{a} \cdot \mathbf{b}=|a||b| \cos \theta
\end{aligned}
$$

## Dot Product

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=\sum a_{i} b_{i} \\
& \mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{aligned}
$$

$$
\mathbf{a} \cdot \mathbf{b}=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z}
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]
$$

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{\mathrm{T}} \mathbf{b}
$$

$\mathbf{a} \cdot \mathbf{b}=|a||b| \cos \theta$

## Example: Angle Between Vectors

-How do you find the angle $\theta$ between vectors $\mathbf{a}$ and $\mathbf{b}$ ?


## Example: Angle Between Vectors

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta \\
& \cos \theta=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right) \\
& \theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right) \quad \frac{\mathbf{b}}{\mathbf{a}}
\end{aligned}
$$

## Dot Product Properties

-The dot product is a scalar value that tells us something about the relationship between two vectors

- If $\mathbf{a} \cdot \mathbf{b}>0$ then $\theta<90^{\circ}$
- Vectors point in the same general direction
-If $\mathbf{a} \cdot \mathbf{b}<0$ then $\theta>90^{\circ}$
- Vectors point in opposite direction
- If $\mathbf{a} \cdot \mathbf{b}=0$ then $\theta=90^{\circ}$
- Vectors are perpendicular
- (or one or both of the vectors is degenerate $(0,0,0)$ )


## Dot Products with One Unit Vector

- If $|\mathbf{u}|=1.0$ then $\mathbf{a} \cdot \mathbf{u}$ is the length of the projection of $\mathbf{a}$ onto u



## Dot Products with Unit Vectors



## Cross Product

$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}i & j & k \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$
$\mathbf{a} \times \mathbf{b}=\left[\begin{array}{lll}a_{y} b_{z}-a_{z} b_{y} & a_{z} b_{x}-a_{x} b_{z} & a_{x} b_{y}-a_{y} b_{x}\end{array}\right]$

## Properties of the Cross Product

$\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to both $\mathbf{a}$ and $\mathbf{b}$, in the direction defined by the right hand rule
$|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$
$|\mathbf{a} \times \mathbf{b}|=$ area of parallelogram $\mathbf{a b}$
$|\mathbf{a} \times \mathbf{b}|=0$ if $\mathbf{a}$ and $\mathbf{b}$ are parallel
(or one or both degenerate)

## Example: Align two vectors

- We are heading in direction $\mathbf{h}$. We want to rotate so that we will align with a different direction $\mathbf{d}$. Find a unit axis a and an angle $\theta$ to rotate around.



## Example: Align two vectors

$$
\begin{aligned}
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{h} \times \mathbf{d}}{|\mathbf{h} \times \mathbf{d}|} \\
\theta & =\sin ^{-1}\left(\frac{|\mathbf{h} \times \mathbf{d}|}{|\mathbf{h}||\mathbf{d}|}\right) \\
\theta & =\cos ^{-1}\left(\frac{\mathbf{h} \cdot \mathbf{d}}{|\mathbf{h}||\mathbf{d}|}\right) \\
\theta & =\tan ^{-1}\left(\frac{|\mathbf{h} \times \mathbf{d}|}{\mathbf{h} \cdot \mathbf{d}}\right) \\
\text { theta } & =\operatorname{atan} 2(|\mathbf{h} \times \mathbf{d}|, \mathbf{h} \cdot \mathbf{d})
\end{aligned}
\end{aligned}
$$

h

## Float3 Structure

```
struct Float3
{
        union
        {
            float d[3];
            struct { float x, y, z; };
            struct { float r, g, b; };
            struct { float s, t, u; };
            struct { float alpha, beta, gamma; };
    };
}
```


## Float3 Structure

```
struct Float3
{
    :
    :
    Float3();
    Float3(float c);
    Float3(int i);
    Float3(double x);
    Float3(float x, float y, float z);
    const float &operator[](int i) const
    { return d[i]; }
    float &operator[](int i)
        { return d[i]; }
    :
}
```


## Float3 Structure

```
struct Float3
{
    :
    Float3 &operator += (const Float3 &x)
    { FOR(i,3) d[i] += x[i]; return *this; }
    Float3 &operator -= (const Float3 &x)
        { FOR(i,3) d[i] -= x[i]; return *this; }
        Float3 &operator *= (const Float3 &x)
            { FOR(i,3) d[i] *= x[i]; return *this; }
        Float3 &operator *= (const float &x)
            { FOR(i,3) d[i] *= x; return *this; }
            Float3 &operator /= (const Float3 &x)
            { FOR(i,3) d[i] /= x[i]; return *this; }
            Float3 &operator /= (const float &x)
            { FOR(i,3) d[i] /= x; return *this; }
    :
}
```


## Float3 Structure

```
struct Float3
{
    :
    Float3 operator + (const Float3 &x) const
    { return Float3(d[0] + x[0], d[1] + x[1], d[2] + x[2]); }
    Float3 operator - () const
        { return Float3(-d[0], -d[1], -d[2]); }
        Float3 operator - (const Float3 &x) const
            { return Float3(d[0] - x[0], d[1] - x[1], d[2] - x[2]); }
        Float3 operator * (const Float3 &x) const
        { return Float3(d[0] * x[0], d[1] * x[1], d[2] * x[2]); }
        Float3 operator * (float x) const
        { return Float3(d[0]*x, d[1]*x, d[2]*x); }
    Float3 operator / (const Float3 &x) const
        { return Float3(d[0] / x[0], d[1] / x[1], d[2] / x[2]); }
    Float3 operator / (float x) const {
        float inv = 1.0f / x;
        return Float3(d[0] * inv, d[1] * inv, d[2] * inv);
    }
    :
}
```


## Float3 Structure

```
struct Float3
{
    :
    :
    float length_squared() const
    {
        return d[0]*d[0] + d[1]*d[1] + d[2]*d[2];
    }
    float length() const
    {
        return sqrtf(length_squared());
    }
}
```


## Float3 Structure

```
inline Float3 normalize(const Float3 &v)
{
    return v / v.length();
}
inline Float3 operator*(float f, const Float3 &v)
{
    return v*f;
}
inline float dot(const Float3 &v1, const Float3 &v2)
{
    return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
inline Float3 cross(const Float3 &v1, const Float3 &v2)
{
    return Float3((v1.y * v2.z) - (v1.z * v2.y),
    (v1.z * v2.x) - (v1.x* v2.z),
    (v1.x* v2.y) - (v1.y * v2.x));
}
```


## Elementary Ray Tracer

## Projection

- Models are 3D, but images are 2D.
- The process of converting 3D to 2D is called projection.
- Typically, computer graphics apps use two kinds of projections.
- Orthographic Projection
- Perspective Projection
- We will use orthographic projection here.


## Orthographic Projection

- Pixels are on an image plane.
- Rays are perpendicular to the plane.
- Lacks foreshortening --- further objects do not get smaller.
- Used in design/architectural drawings, where precision is important.
- Human eyes do not see this way.


## Orthographic Projection


http://www2.arts.ubc.ca/TheatreDesign/crslib/drft_1/orthint.htm

## Orthographic Projection


http://www2.arts.ubc.ca/TheatreDesign/crslib/drft_1/cad/wdstv.htm

## Orthographic vs Perspective


orthographic

perspective

## Defining Orthographic Projection

- We need six parameters
- left, right: bounds in x-axis
- top, bottom: bounds in y-axis
- hither (near), yon (far): bounds in z-axis
- This define a prism inside which are the things we see.


## Orthographic Prism



## Ray

- Basically, it's a half line.
- Begins at a point called the origin.
- Extends towards infinity in a given direction.
- For simplicity, direction should always be a unit vector.
- Let the origin be denoted by $\mathbf{o}$ and let the direction be denoted by $\mathbf{d}$.
- Then, a ray is a set of the following points:

$$
\{\mathbf{o}+t \mathbf{d}: t \in[0, \infty]\}
$$

Ray


## Ray

```
struct Ray
{
    Float3 origin;
    Float3 direction;
    float tmin;
    float tmax;
    Ray(const Float3 &_origin = Float3(0,0,0),
        const Float3 &_direction = Float3(0,0,1),
        float _tmin = 0,
        float _tmax = INFINITY);
    ~Ray();
        inline Float3 operator() (float t) const
        {
        return origin + direction * t;
    }
};
```


## Ray

- tmin
- The time the ray starts
- Typically 0 or a very small value, say 0.00001 .
- We use 0.00001 because we want to avoid the case where the view plane is on the surface of something
- tmax
- The time the ray stops.
- The time it hits something.
- Initially, infinity.
- Set of points (revisited)

$$
\left\{\mathbf{o}+t \mathbf{d}: t_{\min } \leq t<t_{\max }\right\}
$$

## Camera

- Responsible for generating rays.
- Let's define image plane to be the rectangle

$$
\{(x, y):-1 \leq x, y \leq 1\}
$$

- A camera maps ( $\mathrm{x}, \mathrm{y}$ ) from the image plane to a ray.
- class Camera
\{
public:
Camera();
virtual ~Camera();
virtual Ray gen_ray(float sx, float sy) const = 0;
\};


## Orthographic Camera

- Needs 6 parameters: left, right, bottom, top, hither, yon
- class OrthographicCamera : public Camera \{ public:

OrthographicCamera(
float _left,
float _right,
float _bottom,
float _top,
float _hither = RAY_EPSILON,
float _yon = INFINITY);
virtual ~0rthographicCamera();
virtual Ray gen_ray(float sx, float sy) const;
public:
float left, right, bottom, top, hither, yon; \};

## Orthographic Camera

- Image plane is the $x y$-plane.
- So the ray must travel along the $z$-axis.
- Orthographic camera generates rays that travels in the negative-z direction
- Ray OrthographicCamera::gen_ray( float sx, float sy ) const \{
$s x=0.5 f+s x / 2 ;$
$s y=0.5 f+s y / 2 ;$
float $x=$ left $+(r i g h t-l e f t){ }^{*} s x ;$
float $\mathrm{y}=$ bottom + (top - bottom) * sy;
return Ray(Float3(x,y,hither), Float3(0,0,-1), 0.00001f, yon-hither); \}


## Ray-Object Intersection

- In a scene, there are several objects.
- For each ray, we have to find the nearest object that the ray hits.
- But the hit time t must be greater than 0 .


## Ray-Object Intersection



## Geometric Shapes

- They are models of objects in the scene.
- Each object must be able to
- Tell if a ray intersects it
- Compute the time of intersection
- In this lecture, each object has one color.
- We're going work with two more sophisticated models later.


## Class Shape

- class Shape
\{
public:
Shape(const Float3 \&_color);
virtual ~Shape();
virtual bool intersect_p(Ray \&ray) = 0;
Float3 color;
\};
- intersect_p
- Return true if the given ray intersects the shape.
- Modify the ray's tmax to the intersection if intersection occurs.


## Definitions of Sets

- A set can be defined in two ways.
- Explicitly: As the set of images of a functions of free variables.
- A line can be defined as $\{\mathbf{o}+t \mathbf{d}: t \in \mathbb{R}\}$
- A unit circle can be defined as $\{(\cos \theta, \sin \theta): \theta \in[0,2 \pi)\}$
- Implicitly: As the set that satisfies a certain conditions.
- A line can be defined as $\{(x, y): A x+B y+C=0\}$
- A unit circle can be defined as $\left\{(x, y): x^{2}+y^{2}=1\right\}$


## Implicit Definition

- Typically, implicit definitions has a function $f$ that takes in a point and produces a real number.
- Implicit surface is defined as all points at which the function evaluates to 0 .
- If the value is greater than 0 , the point is said to be outside.
- If the value is less than 0 , the point is said to be inside.



## Definition of Sets in Computer Graphics

- We define rays explicitly.
- We define shapes implicitly.
-Why? Because it helps with ray-shape intersection.
- Say, we have a shape defined as $\{\mathbf{p}: f(\mathbf{p})=0\}$ And we want to intersect it with ray $\left\{\mathbf{o}+t \mathbf{d}: t_{\text {min }} \leq t<t_{\text {max }}\right\}$
- We just have to solve the following equation for t:

$$
f(\mathbf{o}+t \mathbf{d})=0
$$

- Then we can decide whether $t$ is in range or not.


## Plane

- Infinite flat sheet of points.
- Defined by
- A point a
- Normal vector n

- Plane is the set of points $\mathbf{p}$ such that the vector from a to $\mathbf{p}$ is perpendicular to the normal.

$$
\{\mathbf{p}:(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=0\}
$$

## Plane Class

- class Plane : public Shape
\{ public:

Plane(const Float3 \&_point, const Float3 \&_normal, const Float3 \&_color);
virtual ~Plane();
virtual bool intersect_p(Ray \&ray);
public:
Float3 point;
Float3 normal;
\};

- Here, the field "point" is the point a on the plane.

And the field "normal" is the normal vector $\mathbf{n}$.

## Ray-Plane Intersection

- We substitute $\mathbf{p}$ with $\mathbf{o}+t \mathbf{d}$ in the plane's equation:

$$
(\mathbf{o}+t \mathbf{d}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- Solving for t , we have

$$
t=\frac{(\mathbf{a}-\mathbf{o}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
$$

## Ray-Plane Intersection

```
bool Plane::intersect_p( Ray &ray )
{
    float A = dot(ray.origin, normal);
    float B = dot(ray.direction, normal);
    float C = dot(point, normal);
    float t = (C - A) / B;
    if (t >= ray.tmin && t < ray.tmax)
    {
        ray.tmax = t;
        return true;
    }
    else
        return false;
}
```


## Sphere

- A set of points that are of a constant from a point called the center (c).
- The constant distance is called the radius (r).
- Set of points:

$$
\begin{gathered}
\{\mathbf{p}:\|\mathbf{p}-\mathbf{c}\|=r\} \\
\left\{\mathbf{p}:(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})=r^{2}\right\}
\end{gathered}
$$

- However, if we say that $\mathbf{c}=\left(c_{x}, c_{y}, c_{z}\right)$ then the above definition becomes:

$$
\left\{(x, y, z):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2}=r^{2}\right\}
$$

## Sphere Class

```
class Sphere : public Shape
{
public:
    Sphere(const Float3 &_center, float _radius, const Float3 &_color);
    virtual ~Sphere();
    virtual bool intersect_p(Ray &ray);
public:
    Float3 center;
    float radius;
};
```


## Ray-Sphere Intersection

- Substituting $\mathbf{o}+t \mathbf{d}$ into the second set definition yields:

$$
(\mathbf{o}+t \mathbf{d}-\mathbf{c}) \cdot(\mathbf{o}+t \mathbf{d}-\mathbf{c})-r^{2}=0
$$

- Expanding, we have

$$
(\mathbf{d} \cdot \mathbf{d}) t^{2}+[2(\mathbf{o}-\mathbf{c}) \cdot \mathbf{d}] t+(\mathbf{o}-\mathbf{c}) \cdot(\mathbf{o}-\mathbf{c})-r^{2}=0
$$

- The above equation is a quadradic equation $a t^{2}+b t+c=0$ where
- $a=\mathbf{d} \cdot \mathbf{d}$
- $b=2(\mathbf{o}-\mathbf{c}) \cdot \mathbf{d}$
- $c=(\mathbf{o}-\mathbf{c}) \cdot(\mathbf{o}-\mathbf{c})-r^{2}$


## Ray-Sphere Intersection

- We can solve the quadratic equation and get

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- The discriminant $d=b^{2}-4 a c$ tells us how the ray intersects the sphere.
- If $\mathrm{d}<0$, the ray doesn't intersect the sphere.
- If $d=0$, the ray intersects the sphere at only one point.
- If $d>0$, the ray intersects the sphere at two points.


## Ray-Sphere Intersection



## Ray-Sphere Intersection

- After computing t , we're not done. We have to find the least non-negative $t$.



## Ray-Sphere Intersection

```
bool Sphere::intersect_p( Ray &ray )
{
    float t;
    Float3 temp = ray.origin - center;
    float a = dot(ray.direction, ray.direction);
    float b = 2 * dot(temp, ray.direction);
    float c = dot(temp, temp) - radius * radius;
    float disc = b*b - 4*a*c;
    if (disc < 0.0f)
        return false;
```


## Ray-Sphere Intersection

```
    else
    {
    float e = sqrtf(disc);
    float denom = 2.0f * a;
    t = (-b - e) / denom;
    if (t >= ray.tmin && t < ray.tmax)
    {
        ray.tmax = t;
        return true;
    }
    t = (-b + e) / denom;
    if (t >= ray.tmin && t < ray.tmax)
    {
        ray.tmax = t;
        return true;
}
else
        return false;
}

\section*{Scene}
- A scene is a combination of two things.
- A number of shapes.
- The camera.
- class Scene
\{
public:
Scene(Camera *_camera = NULL);
virtual ~Scene();
public:
Camera *camera;
std::vector<Shape *> shapes;
\};

\section*{Rendering a Scene}
- Pseudocode:

For row = 0 to image_width-1 do
For col = 0 to image_height-1 do
1. Convert (row, col) to \((x, y)\) where \(-1<=x, y<=1\)
2. Use camera to generate ray from \((x, y)\)
3. Find the first object the ray intersects
4. Record the color of the object to the image

\section*{Rendering a Scene}
```

FOR(iy, image_height)
FOR(ix, image_width)
{
float sx = 2 * (ix + 0.5f) / image_width - 1;
float sy = 2 * (iy + 0.5f) / image_height - 1;
Ray ray = scene.camera->gen_ray(sx, sy);
Shape *hitted_shape = NULL;
FOR(shape_index, shape_count)
{
Shape *shape = scene.shapes[shape_index];
if (shape->intersect_p(ray))
hitted_shape = shape;
}
if (hitted_shape != NULL)
image[ix, iy] = hitted_shape->color;
else
image[ix, iy] = background_color;
}

```
```

