
01418585
Rendering and Shading Techniques	

Lecture 01

Administrivia

About

• This course is a survey course on rendering algorithms.

• You are expected to implement some of them.

• The aims of the course are:

• To equip you with knowledge for future research.

• To develop your programming skills.

Instructor

• Pramook Khungurn

• Email: pramook@gmail.com or fscipmk@ku.ac.th

• Cellphone: 08-5453-5857

• Office: Numberless room in front of the Department’s office

• Office Hour: Wednesday & Friday 1PM - 4PM or by appointment

mailto:pramook@gmail.com
mailto:pramook@gmail.com
mailto:fscipmk@ku.ac.th
mailto:fscipmk@ku.ac.th

Grading

• Homework: 60%

• Final Project: 40%

• No exams.

Requirement

• You should be fluent in C++ (not C).

• You should know:

• Linear algebra

• Calculus

• Probability theory (esp. random variables)

Books

• Kevin Suffern.
Ray Tracing from the Ground Up.
A K Peters, 2009.

• Required

• Since there will be few students,
please order a copy yourself
from Amazon or local
bookstores.

Books

• Not required

• Matt Pharr and Greg Humphreys.
Physically Based Rendering: From Theory to Implementation.
Elsevier, 2004.

• Philip Dutre, Kavita Bala, and Philippe Bekaert.
Advanced Global Illumination.
A K Peters, 2006.

• Henrik Wann Jensen.
Realistic Image Synthesis Using Photon Mapping.
A K Peters, 2009

Web Page

• http://theory.cpe.ku.ac.th/~pramook/418585/

• Please check it frequently for:

• Slides

• Homeworks

• I don’t distribute printouts of slides in class.

http://theory.cpe.ku.ac.th/~pramook/418585/
http://theory.cpe.ku.ac.th/~pramook/418585/

Academic Honesty Policy

• You shall do all of your homework by yourself.

• Type your programs yourself.

• Do not plagiarize.

• Do not copy from your friend or internet sources.

• If you do, you will earn no credits for the assignment.

• However, feel free to collaborate and consult the internet for ideas.

• Please also indicate where you get your ideas from in your hand-ins.

Rendering

Rendering

• The process of generating images from models.

http://en.wikipedia.org/wiki/Global_illumination

Images

• Rectangular array of squares colors.

• Each square is call a pixel (picture element).

http://en.wikipedia.org/wiki/Pixels

Colors

• A vector (R,G,B)

• R, G, B are real numbers
ranging from 0 to 1

• They are intensities of the
red, green, and blue
channel, respectively.

Important Colors and Their RGB Representation

(1,0,0) (0,1,0)

(0,0,1)

(1,1,0)

(1,0,1) (0,1,1)

(1,1,1)

(0,0,0)

Gamut

• The range of color a display
device can display accurately.

• Namely, all the colors that gets
displayed when you set R, G,
and B to various values in
range [0,1]

http://upload.wikimedia.org/wikipedia/commons/d/d3/CIExy1931_srgb_gamut.png

http://upload.wikimedia.org/wikipedia/commons/d/d3/CIExy1931_srgb_gamut.png
http://upload.wikimedia.org/wikipedia/commons/d/d3/CIExy1931_srgb_gamut.png

Models

• Mathematical representation of

• Shapes

• Optical characteristic of
surfaces.

http://amber.rc.arizona.edu/dx/vtkDecimateDX.html

http://en.wikipedia.org/wiki/Nurbs

Photorealistic Rendering

http://en.wikipedia.org/wiki/Rendering

Non-Photorealistic Rendering

The Legend of Zelda: The Wind Waker
http://en.wikipedia.org/wiki/Toon_shading

Rendering Algorithms

Introduction to
Realtime Ray Tracing

Course 41

Philipp Slusallek Peter Shirley
Bill Mark Gordon Stoll Ingo Wald

Rendering in
Computer Graphics

Rendering Algorithms

Rasterization:
Projection geometry forward

Ray Tracing:
Project image samples backwards

Current Technology:
Rasterization

• Rasterization-Pipeline
–Highly successful technology
–From graphics supercomputers to

an add-on in a PC chip-set

• Advantages
–Simple and proven algorithm
–Getting faster quickly
–Trend towards full programmability

Application

Vertex Shader

Rasterization

Fragment Shader

Fragment Tests

Framebuffer

Current Technology:
Rasterization

• Primitive operation of all interactive graphics !!
–Scan converts a single triangle at a time

• Sequentially processes every triangle individually
–Cannot access more than one triangle at a time
 But most effects need access to the entire scene:

 Shadows, reflection, global illumination

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

What is Ray Tracing?
Traversal

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?
Traversal

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?

What is Ray Tracing?

- Global effects

- Parallel (as nature)

- Fully automatic

- Demand driven

- Per pixel operations

- Highly efficient

 Fundamental Technology for Next Generation Graphics

Comparison
Rasterization vs. Ray Tracing

• Definition: Rasterization
 Given a set of rays and a primitive, efficiently

compute the subset of rays hitting the primitive

• Definition: Ray Tracing
 Given a ray and set of primitives, efficiently compute

the subset of primitives hit by the ray

Comparison
Rasterization vs. Ray Tracing

• Hardware Support
–Rasterization has mature & quickly evolving HW

• High-performance, highly parallel, stream computing engine

–Ray tracing mostly implemented in SW
• Requires flexible control flow, recursion & stacks, flexible i/o, …
• Requires virtual memory and demand loading due scene size
• Requires loops in the HW pipeline (e.g. generating new rays)
• Depend heavily on caching and suitable working sets

  Not well supported by current HW

Reasons for Using
Ray Tracing

• Physical Correctness and Dependability
–Numerous approximations caused by rasterization
–Might be good enough for games (but maybe not?)
–Industry needs dependable visual results

• Benefits
–Users develop trust in the visual results
–Important decisions can be based on virtual models

Reasons for Ray Tracing:
Physical Correctness

Fully ray traced car head lamp, faithful visualization requires up to 50 rays per pixel

Reasons for Ray Tracing:
Physical Correctness

Rendered directly from trimmed NURBS surfaces, with smooth environment lighting

Reasons for Ray Tracing:
Physical Correctness

BTF Data Courtesy R. Klein, Uni Bonn

Rendered with accurately measured BTF data
that accounts for micro lighting effects

Textured Phong for
comparison

Reasons for Ray Tracing:
Physical Correctness

VR scene illuminated from realtime video feed, AR with realtime environment lighting

Reasons for Ray Tracing:
Massive Models

• Massive Scenes
–Scales logarithmically with scene size
–Supports billions of triangles

• Benefits
–Can render entire CAD models without simplification
–Greatly simplifies and speeds up many tasks

Reasons for Ray Tracing:
Massive Models

Reasons for Ray Tracing:
Flexible Primitive Types

• Flexible Primitive Types
–Triangles
–Volumes data sets

• Iso-surfaces & direct visualization
• Regular, rectilinear, curvilinear, unstructured, …

–Splines and subdivision surfaces
–Points

Reasons for Ray Tracing:
Flexible Primitive Types

Triangles, Bezier splines, and subdivision surfaces fully integrated

Reasons for Ray Tracing:
Flexible Primitive Types

Volume visualization using multiple iso-surfaces in combination with surface rendering

Reasons for Ray Tracing:
Flexible Primitive Types

Realtime ray tracing of point clouds (1 Mpoints each)
On one dual-Opteron 2.4 GHz: 4-9 fps

24 MPoints, 2.1 fps with shadow @ 640x480

Reasons for Ray Tracing:
Declarative Graphics

• Declarative Graphics Interface
–Application specifies scene once, plus updates
–Rendering fully performed by renderer (e.g. in HW)
–Similar to scene graphs, PostScript, or latest GUIs

• Benefits
–Greatly simplifies application programming
–Allows for complete HW acceleration

Reasons for Ray Tracing:
Declarative Graphics

Reasons for Ray Tracing:
Declarative Graphics

Reasons for Ray Tracing:
Global Illumination

• Global Illumination
–Simulating global lighting through tracing rays
–Indirect diffuse and caustic illumination
–Fully recomputed at up to 20 fps

• Benefits
–Add the subtle but highly important clue for realism
–Allows flexible light planning and control

Reasons for Ray Tracing:
Global Illumination

Conference room (380 000 tris, 104 lights) with full global illumination in realtime

Reasons for Ray Tracing:
Global Illumination

250k / 3 fps 25M / 11 fps Photograph

Light pattern from a car head lamp computed in realtime using photon mapping:
Left: realtime update, middle: accumulated in 30s, right: photograph of real pattern

3D Vectors

Computer Graphics
CSE167: Computer Graphics

Instructor: Ronen Barzel
UCSD, Winter 2006

69

Coordinate Systems
Right handed coordinate systems

 (more on coordinate systems next class)

X

Y

Z

X

Y

Z

70

Vector Arithmetic

a =
ax
ay
az

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

b =
bx
by
bz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a + b =
ax + bx
ay + by
az + bz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a − b =
ax − bx
ay − by
az − bz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sa =
sax
say
saz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−a =
−ax
−ay
−az

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

71

Vector Magnitude
The magnitude (length) of a vector is:

A vector with length=1.0 is called a unit vector
We can also normalize a vector to make it a unit

vector:

v 2
= vx

2 + vy
2 + vz

2

v = vx
2 + vy

2 + vz
2

v
v

72

Dot Product

a ⋅b = aibi∑
a ⋅b = axbx + ayby + azbz

a ⋅b = a b cosθ

73

Dot Product

a ⋅b = aibi∑
a ⋅b = axbx + ayby + azbz

a ⋅b = ax ay az⎡⎣ ⎤⎦

bx
by
bz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a ⋅b = aTb

a ⋅b = a b cosθ

74

Example: Angle Between Vectors

How do you find the angle θ between vectors
a and b?

a

b θ

75

Example: Angle Between Vectors

a

b θ

a ⋅b = a b cosθ

cosθ = a ⋅b
a b

⎛

⎝⎜
⎞

⎠⎟

θ = cos−1 a ⋅b
a b

⎛

⎝⎜
⎞

⎠⎟

76

Dot Product Properties
The dot product is a scalar value that tells us

something about the relationship between two
vectors
If a·b > 0 then θ < 90º

• Vectors point in the same general direction
If a·b < 0 then θ > 90º

• Vectors point in opposite direction
If a·b = 0 then θ = 90º

• Vectors are perpendicular
• (or one or both of the vectors is degenerate (0,0,0))

77

Dot Products with One Unit Vector

a

u

a·u

 If |u|=1.0 then a·u is the length of the projection of a
onto u

78

Dot Products with Unit Vectors

b
θ a

a·b = 0
0 < a·b < 1

a·b = -1

a·b = 1

-1 < a·b < 0 a·b a = b = 1.0
a ⋅b = cos θ()

79

Cross Product

a × b =
i j k
ax ay az
bx by bz

a × b = aybz − azby azbx − axbz axby − aybx⎡⎣ ⎤⎦

80

Properties of the Cross Product

area of parallelogram ab

 is a vector perpendicular to both a
and b, in the direction defined by the
right hand rule

if a and b are parallel
(or one or both degenerate)

a × b

a × b = a b sinθ
a × b =

a × b = 0

81

Example: Align two vectors
We are heading in direction h. We want to rotate so

that we will align with a different direction d. Find a
unit axis a and an angle θ to rotate around.

h

d

82

Example: Align two vectors

h

d
θ

a

a = h × d
h × d

θ = sin−1
h × d
h d

⎛

⎝⎜
⎞

⎠⎟

θ = cos−1 h ⋅d
h d

⎛

⎝⎜
⎞

⎠⎟

θ = tan−1
h × d
h ⋅d

⎛

⎝⎜
⎞

⎠⎟

theta = atan2 h × d , h ⋅d()

Float3 Structure

struct Float3
{
 union
 {
 float d[3];
 struct { float x, y, z; };
 struct { float r, g, b; };
 struct { float s, t, u; };
 struct { float alpha, beta, gamma; };
 };

 :
 :
 :

}

Float3 Structure

struct Float3
{
 :
 :
 Float3();
 Float3(float c);
 Float3(int i);
 Float3(double x);
 Float3(float x, float y, float z);

 const float &operator[](int i) const
 { return d[i]; }
 float &operator[](int i)
 { return d[i]; }
 :
 :
}

Float3 Structure

struct Float3
{
 :
 :
 Float3 &operator += (const Float3 &x)
 { FOR(i,3) d[i] += x[i]; return *this; }
 Float3 &operator -= (const Float3 &x)
 { FOR(i,3) d[i] -= x[i]; return *this; }
 Float3 &operator *= (const Float3 &x)
 { FOR(i,3) d[i] *= x[i]; return *this; }
 Float3 &operator *= (const float &x)
 { FOR(i,3) d[i] *= x; return *this; }
 Float3 &operator /= (const Float3 &x)
 { FOR(i,3) d[i] /= x[i]; return *this; }
 Float3 &operator /= (const float &x)
 { FOR(i,3) d[i] /= x; return *this; }
 :
 :
}

Float3 Structure

struct Float3
{
 :
 :
 Float3 operator + (const Float3 &x) const
 { return Float3(d[0] + x[0], d[1] + x[1], d[2] + x[2]); }
 Float3 operator - () const
 { return Float3(-d[0], -d[1], -d[2]); }
 Float3 operator - (const Float3 &x) const
 { return Float3(d[0] - x[0], d[1] - x[1], d[2] - x[2]); }
 Float3 operator * (const Float3 &x) const
 { return Float3(d[0] * x[0], d[1] * x[1], d[2] * x[2]); }
 Float3 operator * (float x) const
 { return Float3(d[0]*x, d[1]*x, d[2]*x); }
 Float3 operator / (const Float3 &x) const
 { return Float3(d[0] / x[0], d[1] / x[1], d[2] / x[2]); }
 Float3 operator / (float x) const {
 float inv = 1.0f / x;
 return Float3(d[0] * inv, d[1] * inv, d[2] * inv);
 }
 :
 :
}

Float3 Structure

struct Float3
{
 :
 :
 float length_squared() const
 {
 return d[0]*d[0] + d[1]*d[1] + d[2]*d[2];
 }

 float length() const
 {
 return sqrtf(length_squared());
 }
 :
 :
}

Float3 Structure

inline Float3 normalize(const Float3 &v)
{
 return v / v.length();
}

inline Float3 operator*(float f, const Float3 &v)
{
 return v*f;
}

inline float dot(const Float3 &v1, const Float3 &v2)
{
 return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}

inline Float3 cross(const Float3 &v1, const Float3 &v2)
{
 return Float3((v1.y * v2.z) - (v1.z * v2.y),
 (v1.z * v2.x) - (v1.x * v2.z),
 (v1.x * v2.y) - (v1.y * v2.x));
}

Elementary Ray Tracer

Projection

• Models are 3D, but images are 2D.

• The process of converting 3D to 2D is called projection.

• Typically, computer graphics apps use two kinds of projections.

• Orthographic Projection

• Perspective Projection

• We will use orthographic projection here.

Orthographic Projection

• Pixels are on an image plane.

• Rays are perpendicular to the plane.

• Lacks foreshortening --- further objects do not get smaller.

• Used in design/architectural drawings, where precision is important.

• Human eyes do not see this way.

Orthographic Projection

http://www2.arts.ubc.ca/TheatreDesign/crslib/drft_1/orthint.htm

Orthographic Projection

http://www2.arts.ubc.ca/TheatreDesign/crslib/drft_1/cad/wdstv.htm

Orthographic vs Perspective

orthographic perspective

Defining Orthographic Projection

• We need six parameters

• left, right: bounds in x-axis

• top, bottom: bounds in y-axis

• hither (near), yon (far): bounds in z-axis

• This define a prism inside which are the things we see.

Orthographic Prism

Ray

• Basically, it’s a half line.

• Begins at a point called the origin.

• Extends towards infinity in a given direction.

• For simplicity, direction should always be a unit vector.

• Let the origin be denoted by o and let the direction be denoted by d.

• Then, a ray is a set of the following points:

{o + td : t ∈ [0,∞]}

Ray

Ray

struct Ray
{
 Float3 origin;
 Float3 direction;
 float tmin;
 float tmax;

 Ray(const Float3 &_origin = Float3(0,0,0),
 const Float3 &_direction = Float3(0,0,1),
 float _tmin = 0,
 float _tmax = INFINITY);
 ~Ray();

 inline Float3 operator() (float t) const
 {
 return origin + direction * t;
 }
};

Ray

• tmin

• The time the ray starts

• Typically 0 or a very small value, say 0.00001.

• We use 0.00001 because we want to avoid the case where the view plane
is on the surface of something

• tmax

• The time the ray stops.

• The time it hits something.

• Initially, infinity.

• Set of points (revisited)

{o + td : tmin ≤ t < tmax}

Camera

• Responsible for generating rays.

• Let’s define image plane to be the rectangle

• A camera maps (x,y) from the image plane to a ray.

• class Camera
{
public:
 Camera();
 virtual ~Camera();

 virtual Ray gen_ray(float sx, float sy) const = 0;
};

{(x, y) : −1 ≤ x, y ≤ 1}

Orthographic Camera

• Needs 6 parameters: left, right, bottom, top, hither, yon

• class OrthographicCamera : public Camera
{
public:
 OrthographicCamera(
 float _left,
 float _right,
 float _bottom,
 float _top,
 float _hither = RAY_EPSILON,
 float _yon = INFINITY);
 virtual ~OrthographicCamera();
 virtual Ray gen_ray(float sx, float sy) const;

public:
 float left, right, bottom, top, hither, yon;
};

Orthographic Camera

• Image plane is the xy-plane.

• So the ray must travel along the z-axis.

• Orthographic camera generates rays that travels in the negative-z direction

• Ray OrthographicCamera::gen_ray(float sx, float sy) const
{
 sx = 0.5f + sx / 2;
 sy = 0.5f + sy / 2;

 float x = left + (right - left) * sx;
 float y = bottom + (top - bottom) * sy;

 return Ray(Float3(x,y,hither), Float3(0,0,-1), 0.00001f, yon-hither);
}

Ray-Object Intersection

• In a scene, there are several objects.

• For each ray, we have to find the nearest object that the ray hits.

• But the hit time t must be greater than 0.

Ray-Object Intersection

Geometric Shapes

• They are models of objects in the scene.

• Each object must be able to

• Tell if a ray intersects it

• Compute the time of intersection

• In this lecture, each object has one color.

• We’re going work with two more sophisticated models later.

Class Shape

• class Shape
{
public:
 Shape(const Float3 &_color);
 virtual ~Shape();
 virtual bool intersect_p(Ray &ray) = 0;

 Float3 color;
};

• intersect_p

• Return true if the given ray intersects the shape.

• Modify the ray’s tmax to the intersection if intersection occurs.

Definitions of Sets

• A set can be defined in two ways.

• Explicitly: As the set of images of a functions of free variables.

• A line can be defined as

• A unit circle can be defined as

• Implicitly: As the set that satisfies a certain conditions.

• A line can be defined as

• A unit circle can be defined as

{(cos θ, sin θ) : θ ∈ [0, 2π)}

{o + td : t ∈ R}

{(x, y) : Ax + By + C = 0}

{(x, y) : x2 + y2 = 1}

Implicit Definition

• Typically, implicit definitions has a function f that takes in a point and
produces a real number.

• Implicit surface is defined as all points at which the function evaluates to 0.

• If the value is greater than 0, the point is said to be outside.

• If the value is less than 0, the point is said to be inside.

Definition of Sets in Computer Graphics

• We define rays explicitly.

• We define shapes implicitly.

• Why? Because it helps with ray-shape intersection.

• Say, we have a shape defined as
And we want to intersect it with ray

• We just have to solve the following equation for t:

• Then we can decide whether t is in range or not.

{p : f(p) = 0}
{o + td : tmin ≤ t < tmax}

f(o + td) = 0

Plane

• Infinite flat sheet of points.

• Defined by

• A point a

• Normal vector n

• Plane is the set of points p such that the vector from a to p is perpendicular
to the normal.

{p : (p− a) · n = 0}

Plane Class

• class Plane : public Shape
{
public:
 Plane(const Float3 &_point, const Float3 &_normal, const Float3 &_color);
 virtual ~Plane();
 virtual bool intersect_p(Ray &ray);

public:
 Float3 point;
 Float3 normal;
};

• Here, the field “point” is the point a on the plane.
And the field “normal” is the normal vector n.

Ray-Plane Intersection

• We substitute with in the plane’s equation:

• Solving for t, we have

o + tdp

(o + td− a) · n = 0

t =
(a− o) · n

d · n

Ray-Plane Intersection

bool Plane::intersect_p(Ray &ray)
{
 float A = dot(ray.origin, normal);
 float B = dot(ray.direction, normal);
 float C = dot(point, normal);
 float t = (C - A) / B;

 if (t >= ray.tmin && t < ray.tmax)
 {
 ray.tmax = t;
 return true;
 }
 else
 return false;
}

Sphere

• A set of points that are of a constant from a point called the center (c).

• The constant distance is called the radius (r).

• Set of points:

• However, if we say that then the above definition becomes:

{p : �p− c� = r}

c = (cx, cy, cz)

{(x, y, z) : (x− cx)2 + (y − cy)2 + (z − cz)2 = r2}

{p : (p− c) · (p− c) = r2}

Sphere Class

class Sphere : public Shape
{
public:
 Sphere(const Float3 &_center, float _radius, const Float3 &_color);
 virtual ~Sphere();
 virtual bool intersect_p(Ray &ray);

public:
 Float3 center;
 float radius;
};

Ray-Sphere Intersection

• Substituting into the second set definition yields:

• Expanding, we have

• The above equation is a quadradic equation where

•

•

•

o + td

(o + td− c) · (o + td− c)− r2 = 0

(d · d)t2 + [2(o− c) · d]t + (o− c) · (o− c)− r2 = 0

at2 + bt + c = 0

a = d · d

b = 2(o− c) · d

c = (o− c) · (o− c)− r2

Ray-Sphere Intersection

• We can solve the quadratic equation and get

• The discriminant tells us how the ray intersects the sphere.

• If d < 0, the ray doesn’t intersect the sphere.

• If d = 0, the ray intersects the sphere at only one point.

• If d > 0, the ray intersects the sphere at two points.

t =
−b±

√
b2 − 4ac

2a

d = b2 − 4ac

Ray-Sphere Intersection

Ray-Sphere Intersection

• After computing t, we’re not done. We have to find the least non-negative t.

Ray-Sphere Intersection

bool Sphere::intersect_p(Ray &ray)
{
 float t;
 Float3 temp = ray.origin - center;
 float a = dot(ray.direction, ray.direction);
 float b = 2 * dot(temp, ray.direction);
 float c = dot(temp, temp) - radius * radius;
 float disc = b*b - 4*a*c;

 if (disc < 0.0f)
 return false;

 :
 :
 :

Ray-Sphere Intersection

 else
 {
 float e = sqrtf(disc);
 float denom = 2.0f * a;
 t = (-b - e) / denom;

 if (t >= ray.tmin && t < ray.tmax)
 {
 ray.tmax = t;
 return true;
 }

 t = (-b + e) / denom;
 if (t >= ray.tmin && t < ray.tmax)
 {
 ray.tmax = t;
 return true;
 }
 else
 return false;
 }
}

Scene

• A scene is a combination of two things.

• A number of shapes.

• The camera.

• class Scene
{
public:
 Scene(Camera *_camera = NULL);
 virtual ~Scene();

public:
 Camera *camera;
 std::vector<Shape *> shapes;
};

Rendering a Scene

• Pseudocode:

For row = 0 to image_width-1 do
 For col = 0 to image_height-1 do

 1. Convert (row,col) to (x,y) where -1 <= x,y <= 1

 2. Use camera to generate ray from (x,y)

 3. Find the first object the ray intersects

 4. Record the color of the object to the image

Rendering a Scene

 FOR(iy, image_height)
 FOR(ix, image_width)
 {
 float sx = 2 * (ix + 0.5f) / image_width - 1;
 float sy = 2 * (iy + 0.5f) / image_height - 1;

 Ray ray = scene.camera->gen_ray(sx, sy);

 Shape *hitted_shape = NULL;
 FOR(shape_index, shape_count)
 {
 Shape *shape = scene.shapes[shape_index];
 if (shape->intersect_p(ray))
 hitted_shape = shape;
 }

 if (hitted_shape != NULL)
 image[ix, iy] = hitted_shape->color;
 else
 image[ix, iy] = background_color;
 }

