Implicit Visibility and Antiradiance for Interactive Global Illumination

Carsten Dachsbacher
REVES/INRIA Sophia-Antipolis

Marc Stamminger

fps 7.8, iterations 4

S .TJ, iterations 4

University of Erlangen

Frédo Durand
MIT CSAIL

George Drettakis
REVES/INRIA Sophia-Antipolis

fps 6.0, iterations: 3

Figure 1: Left: An office which receives light through a window on the right wall while the rest of the scene is lit indirectly. Our method
avoids explicit visibility computation and our GPU implementation enables the manipulation of the light or objects at 9 frames per second
(fps). This includes four iterations of radiance and antiradiance per frame. Center: We can also include an animated character; indirect light
is updated at 7.8 fps. Right: Our method naturally handles glossy surfaces; the glossy bust is lit indirectly, since the light points at the ceiling.

Abstract

We reformulate the rendering equation to alleviate the need for ex-
plicit visibility computation, thus enabling interactive global illu-
mination on graphics hardware. This is achieved by treating visi-
bility implicitly and propagating an additional quantity, called an-
tiradiance, to compensate for light transmitted extraneously. Our
new algorithm shifts visibility computation to simple local itera-
tions by maintaining additional directional antiradiance information
with samples in the scene. It is easy to parallelize on a GPU. By
correctly treating discretization and filtering, we can compute indi-
rect illumination in scenes with dynamic objects much faster than
traditional methods. Our results show interactive update of indirect
illumination with moving characters and lights.

Keywords: Global illumination, visibility, GPU

1 Introduction

Interactive global illumination is still an elusive goal, despite an
abundance of heuristic solutions in recent years. The main expense
in most methods is the cost of visibility; a primary goal of this pa-
per is to enable global illumination without requiring explicit visi-

bility computation. We start from the observation that if visibility is
ignored, some light is transmitted extraneously through opaque ob-
jects and needs to be canceled out. This is why we introduce a new
quantity called antiradiance that corresponds to light that needs to
be removed. We present a reformulation of the rendering equation
that requires the consideration of both radiance and antiradiance but
enables the treatment of visibility in an implicit manner.

Our reformulation dramatically simplifies the treatment of pairwise
interaction between objects: the propagation of radiance and an-
tiradiance between two objects does not depend on occlusion due
to other objects, which greatly facilitates parallelization on graph-
ics hardware. The price to pay is that we now need to simulate
two quantities, radiance and antiradiance, and the directional dis-
tribution of antiradiance must be considered. However, for indirect
illumination (or any low frequency illumination), visibility quickly
becomes “averaged out” after a few bounces of light and the direc-
tional discretization of antiradiance does not need to be extremely
fine. For high-frequency direct lighting, we can use a separate tradi-
tional technique such as shadow maps. Furthermore, the treatment
of directional quantities is desirable to handle glossy materials, al-
though they incur extra cost for the local shading integral.

Our paper makes the following contributions:

A reformulation of the rendering equation, where visibility is
implicit and antiradiance compensates for extraneous transport.

Two iterative solutions, one that provably converges but requires
more iterations, and one that converges in practice and is cheaper.

Hierarchical discretization based on a spatial and directional data
structure, with appropriate refinement and pre-filtering.

An efficient GPU implementation, which allows real-time global
illumination for scenes which are hard to treat with all previous
methods (moving objects and lights, varying material properties,
mainly indirect illumination).

We show that our method can compute solutions which are close to
reference images from a path-tracer [Pharr and Humphreys 2004],
and illustrate our algorithm on several test examples.

1.1 Related Work

Global illumination is a vast field and excellent introductory books
exist, e.g. [Dutré et al. 2006; Pharr and Humphreys 2004]. We only
discuss work that is most directly related to our approach.

“Negative light” was used to allow for incremental radiosity up-
dates, where it compensates for the different visibility configura-
tion between two frames [Buckalew and Fussell 1989; Puech et al.
1990; Chen 1990]. Shadow photons [Jensen and Christensen 1995]
are also related to the idea of negative light. Note that visibility
computation is still required, in contrast to our use of antiradiance.
In particular, methods for the efficient update of global illumina-
tion [Shaw 1997; Drettakis and Sillion 1997] require searching for
regions that need recomputation of visibility. Our reformulation
avoids this search and does not require any explicit visibility com-
putation.

Bunnel [2005] uses “negative light” to approximate ambient occlu-
sion and simulates the effect of inter-reflection. In contrast to our
work, his negative light is not directional, and this heuristic does
not respect the rendering equation.

The most related work is by Pellegrini [1999] who also derives a
new rendering equation where explicit visibility is avoided. We use
similar ideas where negative light is transmitted through each sur-
face to compensate for the lack of occlusion treatment. However,
his work does not demonstrate an implementation and does not dis-
cuss convergence and directional discretization issues.

A number of solutions for dynamic global illumination perform par-
tial computations and use caching or reprojection of results of pre-
vious frames. An example is the Shading Cache [Tole et al. 2002];
this approach caches samples from a path tracer and uses graphics
hardware for interpolation. However, these approaches still require
visibility to compute the sparse samples.

Our approach builds on ideas from clustering methods for hierar-
chical radiosity [Sillion 1995; Smits et al. 1994], since we cre-
ate links between clusters of objects to accelerate computations for
more complex scenes. These approaches however require sophisti-
cated data structures and global random-access visibility computa-
tions for form-factors. Extensions to this method stored directional
radiance using wavelets [Stamminger et al. 2000] or spherical har-
monics [Sillion et al. 1995]. In contrast, we store a directional in-
formation of “negative light”, thus avoiding visibility computation.

Precomputed Radiance Transfer is a method to quickly compute the
reflection integral for a given environment, e.g. [Sloan et al. 2002;
Kautz et al. 2002; Sloan et al. 2005]. Local inter-reflection between
an object and the environment can be approximated, e.g. [Sloan
et al. 2002], but all these approaches require significant precompu-
tation and do not simulate the balance of light due to global illumi-
nation. Our technique is complementary and combining our global
simulation with precomputed local interaction is an exciting avenue
of future work. Kristensen et al. [2005] simulate global illumination
but for a fixed geometry and require substantial precomputation.
Kontkanen et al. [2006] use a 4D discretization and a hierarchy, but
they need to compute explicit visibility and require lengthy precom-
putation to treat static scenes only. Hasan et al. [2006] precompute
a direct-to-indirect light transfer matrix for interactive GPU-based
relighting, but are restricted to a fixed camera and static scene.

Ren et al. [2006] proposed a different reformulation of visibility
using the exponentiation of spherical harmonics in the context of
soft shadows. They however still need to determine the occluders
between an object and the light and do not treat global illumination.

A number of authors have mapped global illumination algorithms
on graphics hardware, e.g. [Coombe et al. 2004; Purcell et al. 2003].
However, they need to cope with visibility computations that are
not GPU-friendly, raising important implementation challenges and
performance limitations. Keller [1997] places a large number of
virtual light sources, requiring visibility treatment, and accumulates
their contribution with hardware shadow mapping and blending.

1.2 Overview

To achieve rapid and GPU-friendly global illumination, we get rid
of explicit visibility computation such as ray casting and reorga-
nize the traditional rendering equation by reformulating occlusion
in an implicit manner. This allows us to consider pairwise object
interaction as if all other objects were transparent and did not cause
occlusion, thereby greatly simplifying computations.

To compensate for missing occlusion, every surface point emits in-
cident light backwards as “negative light”. We refer to this “nega-
tive light” as antiradiance. Antiradiance is propagated in the same
way as normal radiance and cancels out the light that incorrectly
traversed surfaces due to omitted occlusion. We thus propagate two
quantities: radiance and antiradiance and it is critical to consider
the directional distribution of antiradiance. At this price, we can
replace the very costly occluded propagation of traditional global
illumination by a much cheaper unoccluded propagation step.

i

g

Figure 2: Top, left to right: after one iteration there are no shad-
ows, since antiradiance has not been propagated. At two iterations
shadows are too dark; after three they are too bright (yellow box).
Bottom: with 4 iterations the solution is almost converged, com-
pared to 8 iterations and the path-traced reference.

We illustrate the basic concept in Fig. 2. We formalize this process
by reformulating the rendering equation and demonstrating the cor-
rectness of this reformulation. We also provide an iterative solution
method, and discuss speed and convergence choices.

Since antiradiance is a directional quantity, we use spatial and direc-
tional finite elements to solve the system of equations. We use ap-
propriate pre-filtering in space and directions for form-factor com-
putation, and develop a hierarchical solution to deal with complex-
ity. Our solution has been designed to be stream-processor friendly.
The actual GPU implementation includes several important design
choices, allowing us to achieve interactive global illumination up-
dates, with moving objects and moving lights.

(a) Traditional Rendering Equation
- > %

G K
> ——>
occluded reflection
O
X transport X X

(b) New Rendering Equation with Implicit Visibility and Antiradiance
Difference radiance - antiradiance

L-
incident
‘ZI(% radiance Lin K

I_: > \
U reflection 'x;adiance L
:> J antira(%ance A
unoccluded, I > X

XO transport xY

go-through

Figure 3: (a) Operator formalization of the rendering equation. (b)
Our reformulation uses unoccluded transport but creates antiradi-
ance to compensate for extraneous transport.

2 Reformulating the Rendering Equation

Traditional rendering equation The Rendering Equation [Ka-
jiya 1986] can be expressed in terms of linear operators that act
on radiance L(x,®), where x is a point in space and @ a direction
[Arvo et al. 1994] (Fig. 3). Please note that we follow the conven-
tion of [Arvo et al. 1994] for the directions and signs in the operator
formulation. The reflection operator K takes incident radiance Lj,
and performs the shading integral to output outgoing radiance L at
each point x,

(KLin)(xa (D) = /Q f(X; Wy — w)Lin(xv a’in)(”xl - (Din>dwin (D

where 7, is the normal at x, f the BRDF and (|) the dot product.
Incident light L;, is obtained through the (occluded) geometry op-
erator G which uses an explicit visibility function ray(x, ®) that
determines the first front-facing point starting at x in direction —®
(rays that reach no hit point return a virtual black point pj¢):

Lin(x,) = (GL)(x,) = L(ray(, ®), ®) @

E(x,) is the self-emission, and the rendering equation becomes:

L(x,0) = E(x,) + (KGL) (x,). 3)

2.1 Reformulation

We seek to replace the transport operator G by an operator U that
does not require explicit visibility. That is, we define U using a
modified ray function RAY that returns the set of all intersection
points (Fig. 3b) in direction —®:

Lp®“ (o) =(UL)(x,0)= 3, L(no) 4)
YERAY (x,0)

Informally, using U directly would propagate excessive light and
we need to compensate for it. This is why we simulate a second
quantity, antiradiance, that cancels out this extraneous radiance.
Note that each time light reaches a surface, it gets extraneously

. L GL JGL GJGL UL UJGL

1 ﬂ] ﬂ']] 1 ﬂ'] I]
!

2|]]] ﬂ"] ﬂ'] [ﬂ']

3[]]]] ﬂ’] [ﬂ’]

(2) () (© (d) © ®

Figure 4: Radiance after unoccluded transport U is the sum of radi-
ance after a series of occluded transport G and “go-through” J.

propagated through it by U. This is why we create antiradiance that
corresponds exactly to the amount of light incident to an object.
In this manner, the light wrongly transmitted during a propagation
gets canceled by antiradiance during the following step.

We now formalize this and relate the unoccluded U and occluded
G operators. To make the fact that U ignores occlusion explicit,
we define a “go-through” operator J that lets incident light through
opaque objects (Fig. 3b lower right). It is essentially the identity:

(ILin) (x,) = Lin(x, @). Q)

With the help of J, we can describe the relation between G and
U. The idea is shown in Fig. 4 with L a Dirac impulse at the top
patch 0. GL is non-zero at patch 1 only. By letting light pass (J)
and propagate it again using G, it reaches patch 2. Every further
application of GJ propagates light one layer further. U is finally the
sum over all layer depths:

UL = GL+GJIGL+GJIGIGL+... (6)

where the terms become zero when G(JG)' reaches scene depth.
This gives us the fundamental equation that relates G and U:

UL = GL+(G+GJIG+...)JGL
= GL+UJGL
—GL = UL-UJGL)

where the left (positive) term UL is unoccluded propagation of ra-
diance and the right term —UJGL propagates “negative light” to
compensate for the lack of occlusion. We call JGL antiradiance,
and denote it by 4:

A=JGL ®)

Our definition of antiradiance still includes visibility, but we can
replace GL by Eq. 7 to get a recursive equation for 4 without G:

A4 = J(UL-UJGL)
JU(L—A) ©)

This equation allows us to determine the antiradiance field 4 for any
radiance distribution L. We start with 4 = 0 and iteratively update
A. After n iterations, where # is the maximum scene depth com-
plexity, the computation converges and we obtain the antiradiance
distribution 4 corresponding to L by an iteration using U (instead
of a single application of G). With the knowledge of 4, we can
compute one iteration step of classical light transport:

GL = UL —UJGL = U(L — 4) (10)

We finally reformulate the rendering equation (3) by replacing G
with its expression in terms of U and antiradiance 4 (Eq. 7, 8)

L=E+KGL=E+KU(L-A),

i.e., we replace G by U and propagate L — 4 instead of L. Our new
rendering equation is

L = E+KU(L—A4) (11
4 = JUL-A). (12)

Note the similarities between Eqs. 11 and 12. Both are recursive
and propagate L — A4 using the unoccluded transport U. L is reflected
via a BRDF in K, antiradiance 4 with the simple operator J, which
is essentially the BRDF of a transparent surface. The recursion is
interdependent, since L and 4 are defined based on each other.

2.2 lterative Solution

Before presenting our finite-element solution to the new render-
ing equation, we discuss iterative strategies and convergence. We
propose two schemes that differ in the relative number of steps of
Egs. 11 and 12. The first scheme has been described in the previ-
ous derivation and is asymmetric. It applies one radiance propaga-
tion and then antiradiance steps until convergence to emulate one
step of GL. It corresponds to traditional global illumination and
hence provably converges. The second method is symmetric and
alternates Eqs. 11 and 12. While we cannot formally prove conver-
gence, our experiments have shown that it is stable in practice; we
present our intuition on why this is the case.

Asymmetric lteration In our first technique, after each step of
radiance propagation (Eq. 11), we iterate over Eq. 12 to propagate
antiradiance until convergence. So after one step of

LD — 4 K UL — 40y, (13)
we apply multiple steps of
AU+ — g UL —4V)y, (14)

where L) is frozen while Jj iterates. The antiradiance iteration ef-
fectively computes 4 = JGL; the required number of iterations is
bound by the scene’s depth complexity.

Symmetric Iteration In our second technique, we solve the
joint equations 11 and 12 by iteratively propagating radiance
(Eq. 13) and antiradiance (Eq. 14). Such a scheme converges only
if the iteration matrix does not have eigenvalues with magnitude
higher than one. In traditional radiosity, this can be easily proven
because the matrix is diagonal-dominant. We cannot make such a
claim here, because the unoccluded transport operator U can create
energy.

In fact, in simplified 2D examples with multiple occlusion and per-
fect mirror-BRDFs, eigenvalues larger than one occur. However, in
practice the symmetric propagation seems to converge faster and we
did not observe divergence. We hypothesize that there is much natu-
ral dampening due to the shading integral. Highly-specular BRDF's
might create more problems and deserve further investigation in fu-
ture work.

Discussion We measured convergence for the office scene from
Fig. 1. The average diffuse reflectance in the scene is 0.66. The re-
sults are shown in Fig. 5. In the asymmetric iteration we alternately

08 1 0
u symmetric . X_

0,6 = ,
. o \ symmetric
2 0,4 87
" S 3 ‘H\\‘\-L —

o E!
0.2 "\R . -4 _1‘
L asymmetric asymmetri¢ 1
0 | 5
0 50 100 150 200 0 50 100 150 200
iterations iterations

Figure 5: Convergence comparison of asymmetric (red) and sym-
metric iteration (blue) for our office scene (Fig. 1). (a) linear plot.
(b) log plot.

apply one radiance propagation and four antiradiance propagation
steps, which become visible as steps in the graph.

For both schemes, we did more than 300 iterations. No divergence
could be observed, the difference between both final results was less
than 10~*. The graph shows that the symmetric iteration is better
in the beginning, however the asymmetric iteration overtakes after
90 steps. Visually, convergence is achieved after less than 10 itera-
tions, and in this range the symmetric iteration has better behavior.
However, the graph does not differentiate between antiradiance and
radiance iteration steps. In particular for complex BRDFs antiradi-
ance propagation is generally faster in computation time, because
the application of J is very cheap compared to K. For the rest of
this paper, we focus on the symmetric scheme.

3 Discrete Finite Element Solution

To solve our new rendering equation, we use spatial and directional
finite elements. Our approach uses a hierarchy to handle complex-
ity. The refinement strategy uses both spatial and directional infor-
mation, and is well adapted to moving objects and lights. We also
show how different direct lighting approaches can be used such as
directional lights or environment maps.

3.1 Discretization

We discretize the scene into a hierarchy of patches P; with centers
x;, and the space of directions into m bins €2; with main directions
;. Each bin covers a solid angle of @y, = 47/n, in practice bins
span between 6 and 20 degrees.

For each patch P, we need to store a discretization of exitant
radiance L(x,®) and antiradiance A4(x,®). To make hierarchy
maintenance simpler, it is convenient to use intensities Iz (x;, ©;)
and I4(x;,®;), i.e. flux over solid angle. We only treat opaque
solids, so that operators K and J update separate hemispheres
(Fig. 6(a)). Thus we can store the quantity exitant intensity
Iox (x;, 0;) = I (x;, @;) — I4(x;,®;) in a single data structure. We
also store incident light as radiance L;,(x;, ®;). Finally, we store
total intensity /., the final intensity used for display.

The iterative computation consists of two steps: in the global pass
exitant intensity I,y = I — 14 is propagated from a sending to a
receiving patch (depending on geometric properties of the two sam-
ples, but not on visibility) and contributes these to L;,(x;, ®). This
corresponds to the operator U. In the subsequent /ocal pass, this
incident radiance is transformed into exitant intensity and antiradi-
ance for the next iteration, thus computing operators K and J.

Global pass The global pass is very similar to the link pass of
standard radiosity, and in its simplest form it is an O(nz) process,
because each of the n patches exchanges light with each other.

A 4
(a) (b) (¢

Figure 6: (a) We can store /., which is the difference I; — Iy
because the operators J and K affect separate hemispheres. (b) The
interaction between x; and xj. (c¢) Finding the interacting bins.

Consider a particular pair of patches (7, P;) with B; being the re-
ceiver and P, the sender. We first assume that, thanks to our hierar-
chical decomposition, patch P, occupies only one directional bin as
seen from the center of P;; we lift this restriction later.

The emitted intensity at P, towards P, is /% = Tox (g, xi — X,
where x; «— xy, is the direction linking the centers of the two patches.
To compute the influence at x;, we position a virtual infinitesimal
surface element d4 at x; that directly faces x; (see Fig. 6 (b)). The
flux from x;, emitted towards dA is then:

i—k
db = i (15)
| e — x|

With our discretization, we first have to find the directional bins,
via which sender and receiver interact (see Fig. 6 (c)). Let the di-
rectional bins at x; and x;, in which this light arrives, be ®; and @y.
We have to distribute the incident flux uniformly over this receiving
bin, so the incident radiance at x; is:

jje— do 1, (xk (D])
LM @) = = ek . (16)
(0 0) dA@win |Jxi —xc]|> Dpin

The “form factor” coupling the exitant light at P, and the incident
light at P; is thus:

ikl _ 1 .
(i — xi| > @pin

a7

Note the difference to standard radiosity form factors: the cosine at
the sender and the sender’s area are implicitly stored in the intensity
distribution /(x;, @;). The cosine at the receiver is computed during
the local pass described below.

&\W//
V/AL\S\\?/AF

Figure 7: We only treat solids: (a) Bidirectional links are only es-
tablished between bins both in the positive hemisphere. (b) Bins in
the negative hemisphere only have outgoing links.

Interacting pairs of sender and receiver are stored as /inks. For stor-
age convenience, we only consider solid objects. This implies that
we establish bidirectional links between bins which are both in the
positive hemisphere, while bins in the negative hemi-sphere only
have outgoing links; see Fig. 7.

Up to now we computed the incident light at the center of P; and
assumed that the energy of the sender P is contracted to its center.
The first assumption corresponds to point collocation in standard

Figure 8: Image (a) without filtering (b) with filtering. We use 4x4
samples on the blocker, accentuating the effect for illustration.

radiosity [Sillion and Puech 1994]. The latter assumption, however,
can lead to artifacts if the sender patch covers a large solid angle and
spreads over several bins. Our oracle refines a link if the solid angle
of the sender is too large. However, when maximum refinement or
patch area thresholds are reached, this is not always the case.

For an accurate CPU implementation, we advocate the precise com-
putation of exchanges between all pairs of bins in the cone sub-
tended by the sender as seen from the receiver. However, for graph-
ics hardware, we need to make computations as local as possible
and use the following heuristic: for each link, we compute the solid
angle of the sender. If this is larger than that of a bin, we “spread”
and filter its energy to the bin’s neighbors. That is, we select a cir-
cular neighborhood of size o, the solid angle subtended by the re-
ceiver and in a sense filter the form factor with a Gaussian blur sim-
ilar to prefiltering for antialiasing. Assuming an optimal uniform
bin distribution the angle between a bin and its closest neighbor

is 4/ %; this is the standard deviation of our Gaussian. This means

that the appropriate bins receive energy, but that this energy is taken
from the wrong bin: that defined by the direction between the patch
centers. However, link refinement ensures that an exchange usually
covers only one or very few bins; Fig. 8 demonstrates the effective-
ness of this heuristic.

Local pass In the local pass, we transform incident radiance Lj,
to reflected radiance and antiradiance, represented as intensities /1,
and 1. The reflection is defined by Eq. 1, however we have to
transform exitant radiance to intensity. At this step, the surface
area a; represented by a sample 7 is needed as well as the sample’s
normal n;. We can then derive:

I (xi, 0;) = ai<”i|wj>L(xil» o))
= a;(ni|0;) 0pin X7y f(xi, 0 — @;)(n;| — @p) Lin (xi, 07)

(18)

For antiradiance, we have to transfer the light incident from bin ®;
to the opposite direction and transform it to intensity:

Iy (xi, ;) = aj(nj| — ©;) Lin (x;, 0;) (19)

3.2 Hierarchy and Refinement

To make computations tractable, we solve the above finite element
problem hierarchically in a spirit similar to Hierarchical Radiosity
with Clustering [Smits et al. 1994; Sillion 1995]. We use a hier-
archy over the scene and simulate exchanges through links at the
appropriate level. The refinement is the same for both quantities.

Our algorithm starts with the creation of links, which is the only
step which must happen on the CPU since it requires random global

access to the scene. We start by considering exchanges from the
root cluster to itself. These self-links are always subdivided, i.e.
replaced by links between all pairs of children. For a non-self-
link we use a simple oracle for refinement: if the solid angle of
the sender with respect to the receiver is larger than the solid an-
gle of a bin of the directional discretization, its light will arrive at
the sender within several bins of the receiver’s incident light dis-
cretization. In this case, we subdivide the link, i.e. we subdivide
sender and/or receiver and consider the links between the children
recursively. Otherwise, we establish the link by computing its form
factor and storing the link. By this, the epsilon threshold of Hierar-
chical Radiosity that controls the accuracy of the solution is linked
to the directional discretization accuracy. Evidently, link refinement
is stopped if sender and receiver become smaller than a discretiza-
tion threshold. This step works very well with clustering: we do
not need a normal and thus do not have to use average normals, nor
consider self-occlusion.

Note that we do not consider the emitted light of the sender as this
is usually done in radiosity (BF-refinement). This would make it
necessary to refine links after each iteration, which does not fit to
our GPU implementation.

Maintenance of the hierarchy The hierarchical representation
must be maintained using a push-pull method. We push all light
gathered in interior nodes to the leaves after the global pass. Then
the local pass is performed at leaves. After the light has been re-
flected and antiradiance generated, the light is pulled up to update
the inner nodes’ light. Since we pull intensity, an inner node’s in-
tensity is simply the sum of its children’s intensities.

3.3 Direct light and Dynamic Scenes

Direct Light Initialization Our approach is geared towards in-
direct illumination. For direct illumination, we can initialize the in-
cident radiance of the samples in the scene, using one of the many
existing methods. We can for example initialize all the L;, using
an environment map. For direct shadows, we can use shadow maps
or one of the more recent soft shadow methods [Guennebaud et al.
2006]. We evaluate direct lighting on each of the samples in the
scene, for example with the shadow map, and initialize the exitant
radiance. No antiradiance is generated in this pass, because shad-
owing of the direct illumination is done by the shadow map. During
rendering, both parts of the lighting computation, fast per-pixel di-
rect lighting with shadows and indirect lighting from the coarser
finite-element illumination is summed in screen-space.

Moving Objects and Lights Moving or deforming objects are
handled naturally and easily with our approach. Since we do not
consider visibility, we only have to update links to and from moving
objects, and we do not have to search for all links that are modified
by changing visibility. The situation is more involved for hierar-
chical computations, because for a moving object the optimal link
hierarchy changes with the position. However, if the position of
moving objects can be reasonably bound, we can also bound the
oracle and generate a link mesh based on the worst case. The link
hierarchy thus does not need to be updated, but only the unoccluded
form factors need to be recomputed, which in turn is a cheap oper-
ation. At the price of a less stringent oracle, the sender’s emission
usually also can be limited by reasonable bounds. One powerful
feature of our approach is that moving lights can be handled in the
same way, albeit with the same limitations.

4 Implementation on Graphics Hardware

One motivation for our approach is to obtain a GPU friendly global
illumination algorithm. The global and local passes described

sqlobal passy

exitant intensity lex incident radiance Lin total intensity Itotal

atches/nodes

| | I
—
directional bins

‘qu%asiw’

Figure 9: The global pass transfers exitant energy between ele-
ments. The local pass first reflects light and generates antiradiance
and second tracks the element’s intensity for display.

Table of exitant intensity, incident Per-Element

radiance and total intensity Data Table
P RN
P LI

Scene

Hierarchy

ArS]
o

unuse

l—m bins—

Figure 10: Left: a simple 2D scene and the corresponding hierar-
chy. Center: the layout of intensity/radiance tables. Right: Per-
element attributes (position, normals, area) are stored in textures
with the same layout.

above can be easily and efficiently performed on graphics hardware.
The CPU only needs to compute the hierarchy of links which is
cheap, because no visibility has to be computed. We now describe
data layout and the mapping of the most important operations.

4.1 Data Structures

The element hierarchy is laid out in depth-first order, which allows
for efficient push/pull operations as we will see later. We use three
tables with » rows (z being the number of elements) each with m
(number of bins) columns, storing exitant intensity /., incident ra-
diance L;, and total intensity /,,,; for every element (Fig. 9). Note
that when stored in textures the tables may be split into multiple tex-
ture columns as texture sizes are restricted by hardware (Fig. 10).
All per-element attributes required for computations (normal, posi-
tion, area, color, specular exponent) are stored in textures with the
same layout but smaller width, so that we can use the same texture
coordinates as we use for accessing the element bins.

Links are stored as render primitives in vertex buffers (Fig. 11, left)
that includes the indices of the sender, receiver, and bin as well as
the form factor value and the cone angle for filtering.

4.2 Operations

For each iteration, we perform the following four operations work-
ing on the aforementioned tables stored as textures and used as ren-
der targets. As GPUs do not allow the use of a render target as
texture at the same time we use intermediate render targets or ping-
pong rendering where necessary.

Global Pass In the global pass (Fig. 11) energy is transferred
from one outgoing bin of a sender element, i.c. one entry in the
I,y table, to the bins of a receiver. Sender and receiver positions
and sizes are used to find the bins used in our form-factor approx-
imation (Sec. 3.1). The bins affected and appropriate filtering are

filter lookup table
o+l

receiving sending form factor and
sample sample & bin spreading ¢

P lglo|Flc

exitant intensity lex

a.0 1

suiq w

Link table " mvalues
N BT Tl

FM Lx filter E

incident radiancé Lin

Figure 11: Energy transfer via a link by rendering a line primitive:
the receiver index of p gives the position, sender index ¢ and outgo-
ing bin @ determine the bin and precomputed spreading/filtering.

precomputed for a finite number of cone sizes 6. For each o we
store an m? convolution table (Fig. 11 upper right): for each out-
going direction (rows), we store the contribution using the filtered
form-factor to all bins of a receiver (columns). Some receiver bins
may not receive energy; in this case the corresponding lookup table
entry is zero.

Using this method, global energy transfer becomes rendering of the
line covering all bins of the receiver element in L;,. As a result
exitant energy weighted by the filter is transferred to the receiver
bins as incident radiance (Fig. 11). For dynamic links, the affected
bins and filter parameters are determined on the fly, otherwise they
are computed once in the linking step.

Push Operation After the global transfer, we push energy down
the hierarchy. Due to depth-first order all child elements are stored
consecutively and we can add a node’s radiance to several (or all)
children at once by rendering quad primitives.

Local Pass For the local pass, we iterate over all bins of every
element: we convolve the incident radiance with the BRDF to ob-
tain the reflected energy and transform the incident radiance of the
opposite bin to antiradiance. The reflected intensity is also accu-
mulated in the /., table, which is used for display. For diffuse
surfaces, the BRDF computation can be accelerated: The reflected
intensity in the normal direction is computed, stored in intermediate
textures and used to compute reflected energy for all bins.

Pull Operation After the local pass we pull energy from the
leaves to their parents. We read the intensity bins of a leaf ele-
ment (from /,,) and add it to the bins of all its predecessors in the
hierarchy (in /). This is achieved by rendering textured lines. Ver-
tex positions are chosen such that the lines cover all receiver bins,
while texture coordinates define the source bins. We store render
primitive data in vertex and index buffers. Note that intensity Zy is
stored after weighting by element area and thus no further scaling
is required.

4.3 Interpolation by Splatting

For final rendering, we need to interpolate the sample values to ob-
tain a smooth solution. For shared vertex meshes, we compute the
total intensity at the vertex locations and use linear hardware inter-
polation. For flat surfaces, we use a three pass rendering approach.
Similarly to splatting for point-based rendering [Lavignotte and
Paulin 2003; Ren et al. 2002], we start with a pass which writes sur-
face IDs to a render target: we interpolate across surfaces patches
sharing the same ID, which is determined after linking as a pre-
process. In a second pass we render triangle fans centered at ele-

ments’ centers and accumulate radiances weighted by a smooth fall-
off. The distance to neighbor elements can be used to deform the
fans and better preserve local features. A third pass re-normalizes
the radiance values by the total weights.

Figure 12: Left, our solution for an entirely indirect lighting situa-
tion: a directional light enters the window at the top of the scene; all
shadows here are indirect. Right a path-tracing reference solution.

5 Results

All the tests were run on a Xeon processor running at 3Ghz, with an
NVIDIA GeForce 8800GTX graphics card. Reference solutions are
computed with PBRT [Pharr and Humphreys 2004], using the path-
tracer module (faster algorithms exist but they tend to be biased and
we focus here on accuracy).

Validation on Simple Scenes We present a few simple scenes
to investigate some sampling issues and overall validation of our
method. We first show a geometrically simple maze scene (Fig. 12),
in which all lighting is indirect. A directional light enters from
above, lighting the wall facing away from the viewer; all light and
shadows in this image are indirect. This is a particularly tough case
as can be seen with the noisy path-tracing solution, despite the 12K
rays/pixel. Our solution shown here, with 1024 bins, spatial subdi-
vision for a total of 6088 elements, and 8 iterations took 3min 45s
(including linking) computed on the CPU, while the path tracing
solution for the image (350 x 330 pixels) took 13h 39min.

Figure 13: Effect of directional sampling. (a): 128 bins, (b) 512
bins; lower directional sampling rates result in blurring of shadows.

As with any finite element basis, sampling rate affects the result.
The effect of directional sampling rate is intuitive, essentially re-
sulting in blurring of shadows. Consider Fig. 13 in which the left
image is computed with 128 bins and the right-hand image with
512 bins. We can clearly see the sharpening of shadow detail with
higher directional sampling.

Figure 14: The untextured office scene for comparison (left to right, top to bottom): (a) The GPU solution at 9 fps. (b) A more refined solution
computed on the CPU in 1m45s with 44,982 elements, 208 directions and 4.6 million links. (c) path-tracing reference, 2048 samples/pixel
(path length 4). (d) absolute difference between GPU and path-tracing (variations at discontinuities mainly due to different anti-aliasing).
(e) Indirect illumination computed with Instant Radiosity running at 9 fps. (f) Using the same link mesh as for Antiradiance, computing
form-factors with visibility (141 rays per link) takes 80min, resulting in a solution akin to Hierarchical Radiosity with Clustering. Note that

a visibility-based refinement would improve the quality.

Example Scenes We show three more involved example scenes.
The first is an office scene, which receives a directional light com-
ing through the window, illuminating the right wall. The interior is
illuminated almost exclusively by indirect light. The second scene
is a simple non-diffuse environment, with a glossy object. The third
scene is a oriental living room (Fig. 16). We use shadow maps for
direct light in the office and living room. Recordings of interactive
sessions for all three sequences are shown in the video.

In Fig. 1 (left), we show the office scene. This scene contains 5,552
input polygons and is subdivided to 18,253 elements and 632,098
links. We use 128 bins for directions. We can move the position of
the light, or any object in the scene at 7-10 fps for 4 iterations. For
example, we can include an animated character with full interactive
update of global illumination in the scene (center). This scene has
19,716 hierarchy elements, 660,783 links and 8,072 input polygons.

To compare the lighting solution against other methods, we chose
to remove textures which tend to hide artifacts. A texture-free ren-
dition of the office is shown in Fig. 14(a) (running at about 9.01ps),
while Fig. 14(b) shows a solution on the CPU with improved light-
ing simulation; Fig. 14(c) is a path-traced solution computed in
PBRT, which we use as a reference. This solution uses 2048 rays
per pixel, a path length of 4, and took 8h 25min to compute and
is still noisy. We also show the absolute difference between the
GPU solution and the reference (Fig. 14(d)). An Instant Radios-

ity [Keller 1997] solution running at 9 fps with 190 virtual light
sources (Fig. 14(e)) suffers from artifacts like bright spots, incor-
rect lighting levels, shadows which are too sharp, and banding. To
generate Fig. 14(f) we used our link structure to compute a Hier-
archical Radiosity with Clustering solution using explicit visibility
which takes 80min.

The second scene includes a glossy object (3072 triangles) lit by
a spot light. We use a Lafortune BRDF as implemented in PBRT.
For low-frequency glossy lighting, our approach can achieve a good
approximation (Fig. 15, left) compared to a reference solution com-
puted by PBRT with path-tracing (Fig. 15, right). This example at
interactive quality with 4550 elements and 177,000 links running at
about 12 fps for 3 iterations is shown in the video. A more complex
object (12,940 input polygons for the bust) is shown in Fig. 1 right.
The glossy bust is lit indirectly, and we can move the spot light,
change view point, and modify material parameters at about 6 fps.

We show statistics for all scenes in Tables 1 and 2. Table 2 shows
the breakdown of computation time and memory usage. Unsurpris-
ingly, the local pass dominates for glossy scenes, while it is the
other way round for diffuse scenes. Overall GPU memory usage
(< 140Mb for all scenes, including optional look-up textures for
speed-up) is reasonable for modern high-end graphics cards. On
the GPU we store intensities and radiances as 16-bit floats and link
data as 32-floats; no precision problems were observed.

Scene T E L N; fps fpss
Office 5.6K 182K | 632K 4 10.1 9.0
Character 8.1K 19.7K | 661K 4 8.3 7.1
Oriental 11.9k 15.6K | 776K 4 7.5 6.8
Glossy box 3.5k 4.6K 177K 3 149 | 119
Glossy bust 13.4k 11.5K | 412K 3 6.4 5.6

Table 1: Scene data and timings. T: number of input triangles, E:
number of elements, L: number of links, ;: number of iterations;
128 bins are used. fps,: with splatting and 4x anti-aliasing. Shared
vertex mesh elements are created at vertices yielding fewer samples.

Figure 15: (a) A scene with a glossy object rendered with high qual-
ity settings (12.5K elements, 480K links, 8 iterations, 1.1 fps). Note
the bluish directional indirect illumination from the glossy cube
onto the floor and ceiling. (b) A PBRT reference solution using
path-tracing with 8K rays/pixel computed in more than 40h.

6 Discussion

As illustrated in the results and in the accompanying video, our
method provides fast interactive indirect lighting for interesting
scenes. The main approximation in our approach is the directional
discretization. For indirect light, the shadows and the overall light-
ing effects are generally smooth anyway, and thus this does not
create too many visible artifacts. We consider that the comparison
in overall lighting levels with our reference path-traced solutions is
satisfactory for the interactive application context we target.

There are limitations in our current implementation: Increased
memory usage for the directional data structures and excessive sub-
division for dynamic scenes. At the numerical level, the conver-
gence of the symmetric scheme cannot be ensured; however, the
asymmetric one converges, albeit slower. The excessive subdivi-
sion for dynamic links is a design choice. In the context of a con-
tent creation workflow, we could imagine a tool which allows the
designer to specify regions in which this should happen, based on
knowledge of the usage scenarios. Update of the patch subdivisions
and links can of course be made at runtime, but would involve CPU
computations and upload to the GPU. Finally, in all the examples
we have shown, the computation of 3-4 iterations is sufficient both
in quality and in speed to avoid artifacts. Clearly, for more complex
scenes, this could be a problem: hierarchical or space-subdivision
schemes could potentially provide a solution to this issue.

Our algorithm shares some of the limitations of hierarchical radios-
ity methods in what concerns refinement and meshing. Both are
hard problems; we hope that the availability of interactive global il-
lumination using our approach will accelerate research in this area
and hopefully open the way to practical solutions.

We could also handle transparent surfaces, however the operators
J and K would interfere and could not share a single data structure
thus increasing the memory required.

Our method is related to the idea of “negative light” (Sect. 1.1) re-

cently used by Bunnell [2005] on the GPU. However we present
a proper definition of “negative light” (antiradiance) and the ap-
propriate theoretical basis showing that we solve the rendering
equation. In addition, our algorithmic solution is completely
different, since we store a directional representation for radi-
ance/antiradiance, and we have reorganized light-transfer into
global and local computation. Our hierarchical solution also per-
mits the treatment of more complex scenes.

Figure 16: Oriental room scene; indirect light is updated at 6.8 fps.

7 Conclusion

‘We have presented a reformulation of the rendering equation which
uses implicit visibility. This is achieved by using a new quan-
tity, called antiradiance, which is propagated with radiance, and
is stored in directional elements in the scene. This results in a reor-
ganization of the computation and data structures which are local,
and much easier to parallelize. As a result, we can achieve interac-
tive updates of global illumination for moderately complex scenes,
with moving objects and lights, and glossy reflectors.

In future work, we believe that the reformulation provides a differ-
ent way of thinking about visibility, and could also lead to results in
other applications in computer graphics such as occlusion culling.

Scene 1L(s) LP(ms) | GP(ms) | PP(ms) | My(Mb) M;(Mb)
Office 8.7s 7.1 63.4 14.0 713 29.5
Character 13.1s 8.2 72.0 17.0 77.0 31.1
Oriental 13.0s 10.8 81.4 18.9 60.9 36.0
Glossy box 2.4s 434 24 2.8 17.8 3.8
Glossy bust | 13.0s 100.9 5.6 6.6 44.9 8.8

Table 2: Timing and memory breakdown. IL is the time for initial
linking. LP is the time (total, for all iterations) for the local pass,
GP for the global pass, PP for push pull, My is texture memory
for I /Li, tables and ping-pong textures and M is the memory
required for links (vertex buffers). Element attributes require less
than S00Kb in all scenes.

A more theoretical analysis of the sampling and filtering issues
would be interesting and should lead to more efficient and high-
quality solutions. We are also considering more efficient rendering,
extensions to more involved lighting phenomena and resolving the
meshing/refinement issues discussed above.

Acknowledgements The first author initiated this work at the
University of Erlangen, and was partially funded by the DFG
project “Interaktive Visualisierung Prozeduraler Modelle”; he also
acknowledges support of the Marie-Curie Fellowship “Scalable-
Globlllum” (MEIF-CT-2006-041306). F. Durand acknowledges a
Microsoft Research New Faculty Fellowship, a Sloan fellowship
and an NSF CAREER award 0447561 “Transient Signal Process-
ing for Realistic Imagery.” We thank Autodesk for the generous
donation of Maya, A. Olivier, F. Firsching and P. Richard for mod-
eling help, and P. Green for suggesting the term Antiradiance.

References

ARVO, J., TORRANCE, K., AND SMITS, B. 1994. A framework
for the analysis of error in global illumination algorithms. In
SIGGRAPH °94, 715-84.

BUCKALEW, C., AND FUSSELL, D. 1989. Illumination networks:
Fast realistic rendering with general reflectance functions. In
SIGGRAPH 89, 89-98.

BUNNELL, M. 2005. Dynamic ambient occlusion and indirect
lighting. GPU Gems 2:Programming Techniques for High Perfor-
mance Graphics and General-Purpose Computation, 223-233.

CHEN, S. E. 1990. Incremental radiosity: An extension of pro-
gressive radiosity to an interactive image synthesis system. In
SIGGRAPH 90, 135-144.

COOMBE, G., HARRIS, M. J., AND LASTRA, A. 2004. Radiosity
on graphics hardware. In Proc. Graphics Interface’04, 161-168.

DRETTAKIS, G., AND SILLION, F. 1997. Interactive update
of global illumination using a line-space hierarchy. In SIG-
GRAPH 97, 57-64.

DUTRE, P., BEKAERT, P., AND BALA, K. 2006. Advanced Global
Illumination. A K Peters, Natick, USA.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2006. Real-
time soft shadow mapping by backprojection. In Proc. EG Sym-
posium on Rendering 2006, 227-234.

HASAN, M., PELLACINI, F., AND BALA, K. 2006. Direct-to-
indirect transfer for cinematic relighting. ACM Trans. on Graph-
ics (SIGGRAPH06) 25, 3 (July), 1089—-1097.

JENSEN, H. W., AND CHRISTENSEN, N. J. 1995. Efficiently
Rendering Shadows Using the Photon Map. In Compugraphics
’95,285-291.

KAJtyA, J. T. 1986. The rendering equation. SIGGRAPH ’86 20,
3, 143-150.

KAuTZ, J., SLOAN, P.-P., AND SNYDER, J. 2002. Fast, arbi-
trary BRDF shading for low-frequency lighting using Spherical
Harmonics. In Proc. EG Workshop on Rendering, 291-296.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH '97, 49-56.

KONTKANEN, J., TURQUIN, E., HoLzZSCHUCH, N., AND SIL-
LION, F. 2006. Wavelet radiance transport for interactive indi-
rect lighting. In Proc. EG Symposium on Rendering 2006.

KRISTENSEN, A. W., AKENINE-MOLLER, T., AND JENSEN,
H. W. 2005. Precomputed local radiance transfer for real-time
lighting design. ACM Trans. on Graphics (SIGGRAPH05) 24,
3, 1208.

LAVIGNOTTE, F., AND PAULIN, M. 2003. Scalable photon splat-
ting for global illumination. In GRAPHITE '03.

PELLEGRINI, M. 1999. Rendering equation revisited: How to
avoid explicit visibility computations. In SODA, 725-733.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering from Theory to Implementation. Morgan Kaufmann.

PUECH, C., SILLION, F., AND VEDEL, C. 1990. Improving inter-
action with radiosity-based lighting simulation programs. 51-57.
Proc. SIGGRAPH Symposium on Interactive 3D Graphics’90.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proc. of the SSIGGRAPH/EG
Conf. on Graphics Hardware, 41-50.

REN, L., PFISTER, H., AND ZWICKER, M. 2002. Object space
EWA surface splatting: A hardware accelerated approach to high
quality point rendering. Comp. Graphics Forum (Proc. Euro-
graphics’02) 21, 3.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B.,
SLOAN, P.-P., BAo, H., PENG, Q., AND GUO, B. 2006. Real-
time soft shadows in dynamic scenes using spherical harmonic
exponentiation. ACM Trans. on Graphics (SIGGRAPH 06) 25,
3 (July), 977-986.

SHAW, E. 1997. Hierarchical radiosity for dynamic environments.
Computer Graphics Forum 16,2, 107-118.

SILLION, F. X., AND PUECH, C. 1994. Radiosity and Global
Illumination. Morgan Kaufmann, San Francisco, CA, USA.

SILLION, F. X., DRETTAKIS, G., AND SOLER, C. 1995. A
clustering algorithm for radiance calculation in general environ-
ments. In Proc. EG Workshop on Rendering, 196-205.

SILLION, F. X. 1995. A unified hierarchical algorithm for global
illumination with scattering volumes and object clusters. /EEE
Trans. on Visualization and Computer Graphics 1, 3, 240-254.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. on Graphics (SIG-
GRAPH'02) 21, 3, 527-536.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, de-
formable precomputed radiance transfer. ACM Trans. on Graph-
ics (SIGGRAPH05) 24, 3, 1216-1224.

SMITS, B. E., ARVO, J., AND GREENBERG, D. P. 1994. A clus-
tering algorithm for radiosity in complex environments. In S/G-
GRAPH 94, 435-442.

STAMMINGER, M., SCHEEL, A., GRANIER, X., PEREZ-
CAZORLA, F., DRETTAKIS, G., AND SILLION, F. X. 2000. Ef-
ficient glossy global illumination with interactive viewing. Com-
puter Graphics Forum 19, 1, 13-25.

TOLE, P., PELLACINI, F., WALTER, B., AND GREENBERG, D. P.
2002. Interactive global illumination in dynamic scenes. ACM
Trans. on Graphics (SIGGRAPH02) 21, 3, 537-546.

