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Abstract 
This paper is a companion to a GDC 2008 Lecture with the same title.  It provides a brief 

overview of spherical harmonics (SH) and discusses several ways they can be used in interactive 

graphics and problems that might arise.  In particular it focuses on the following issues:  How to 

evaluate lighting models efficiently using SH, what “ringing” is and what you can do about it, 

efficient evaluation of SH products and where they might be used.  The most up to date version 

is available on the web at http://www.ppsloan.org/publications  

Introduction 
Harmonic functions [2], the solutions to Laplace’s equation, are used extensively in various 

fields.  Spherical Harmonics are the solutions when restricted to the sphere1.   They have been 

used to solve potential problems in physics, such as the heat equation (modeling the variation of 

temperature over time [5][25]), and the gravitational and electric fields[9].  They have also been 

used in quantum chemistry and physics to model the electron configuration in atoms and model 

quantum angular momentum [16][50].  Closer to graphics they have been used to model 

scattering phenomena [7][17].  In computer graphics they have been extensively used, early 

uses were in modeling volumetric scattering effects [18], environmental reflections for micro-

facet BRDF’s without global shadows[6], non-diffuse off-line light transport simulations[40], 

BRDF representations [52], image relighting[28], image based rendering with controllable 

lighting [53][54], and modeling light source emission[8].  More recent examples include more 

work in atmospheric scattering [49] and computer vision [3].   

The focus of this article is on techniques related to interactive rendering.  The first paper that 

has been used extensively in games deals with using Spherical Harmonics to represent 

irradiance environment maps efficiently, allowing for interactive rendering of diffuse objects 

under distant illumination [35].  This was extended to handle a limited class of BRDF’s with the 

same constraints [36].  Precomputed radiance transfer (PRT) [41][20][24] models a static 

object/scenes response to a lighting environment, often represented using SH, including 

complex global illumination effects like soft-shadows and inter-reflections with diffuse and 

simple glossy materials.  This was extended to handle more general BRDF models [20][23] [42], 
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 They are the angular portion of the solution in spherical coordinates. 

http://www.ppsloan.org/publications


incorporate sub-surface scattering [42], significantly improve rendering efficiency through 

compression techniques from machine learning [42], and various techniques to model “local” 

texture like surface details [43][44][45].  SH have been used to model single scattering from 

distant lighting environments [48].  Other uses have been in using gradients to lift the distant 

lighting assumption [1], several techniques addressing dynamic objects [55][37] including 

support for inter-reflections [46][33], as a representation of visibility to model shadowing of 

objects with general BRDF models [12], using scaling operators to model shadows from 

deformable objects [51], as a parameterization of refraction [11] and as a technique to address 

the level of detail problem with normal maps [15].   

More practical papers include covering implementation details for PRT [13], how to integrate 

these techniques into an engine [30], how to use SH+gradients for irradiance volumes [31][32], 

practical issues around projection and how to efficiently quantize SH coefficients [21] and  a nice 

paper that projects an analytic skylight model [34] into SH and uses a global polynomial fit to 

evaluate the SH lightprobe as a function of the models parameters [14].  Numerical techniques 

for more robustly projection functions defined over the hemisphere using SH have also been 

investigated [22]. 

Many of the uses in real-time graphics are just as a convenient way for representing spherical 

functions – visibility, lighting and reflectance.  While there are many other basis functions that 

can be used, wavelets [39], wavelets on cube maps [27], spherical radial basis functions [9], and 

others [26], spherical harmonics have some nice properties that will be described in this 

document.  It is important to stress that there are scenarios where these other basis functions 

are more appropriate. 

While spherical harmonics may seem somewhat daunting, they are actually straightforward.  

They are the spherical analog to the Fourier basis on the unit circle, and are easy to evaluate 

numerically.  Like the Fourier basis used in signal processing, care has to be taken when 

truncating the series (which will always be done in video games), to minimize the “ringing” 

artifacts that can occur.  This article will describe how to evaluate and represent lights efficiently 

using spherical harmonics, how to pull conventional lights out of a SH representation, describe 

“ringing” and mitigation techniques to minimize its impact, and go over products of functions 

using spherical harmonics, describing where they are useful and special cases that are worth 

optimizing for. 

Background 
Definition  Spherical Harmonics define an orthonormal2 basis over the sphere, S.  Using the 

parameterization 

𝑠 =  𝑥, 𝑦, 𝑧 =  sin𝜃 cos𝜑 , sin𝜃 sin𝜑 , cos𝜃  
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 An orthonormal basis is one that has the property  𝑓𝑖𝑓𝑗 = 𝛿𝑖𝑗 , that is one if i==j, and zero otherwise. 



Where s are simply locations on the unit sphere.  The basis functions are defined as 

𝑌𝑙
𝑚  𝜃, 𝜑 = 𝐾𝑙

𝑚𝑒𝑖𝑚𝜑 𝑃𝑙
 𝑚  cos𝜃 , 𝑙 ∈ 𝐍,−𝑙 ≤ 𝑚 ≤ 𝑙 

Where 𝑃𝑙
𝑚  are the associated Legendre polynomials and 𝐾𝑙

𝑚  are the normalization constants 

𝐾𝑙
𝑚 =  

 2𝑙 + 1  𝑙 −  𝑚  !

4𝜋 𝑙 +  𝑚  !
 

The above definition is for the complex form (most commonly used in the non-graphics 

literature), a real valued basis is given by the transformation 

𝑦𝑙
𝑚 =  

 2Re 𝑌𝑙
𝑚  

 2Im 𝑌𝑙
𝑚  

𝑌𝑙
0

 
𝑚 > 0
𝑚 < 0
𝑚 = 0

 =  

 2𝐾𝑙
𝑚  cos𝑚𝜑  𝑃𝑙

𝑚  cos𝜃 

 2𝐾𝑙
𝑚 −sin𝑚𝜑  𝑃𝑙

−𝑚 cos𝜃 

𝐾𝑙
0𝑃𝑙

0 cos𝜃 

 
𝑚 > 0
𝑚 < 0
𝑚 = 0

  

The index l represents the “band”.  Each band is equivalent to polynomials of that degree (so 

zero is just a constant function, 1 is linear, etc.) and there are 2l+1 functions in a given band.   

While spherical coordinates are convenient when computing integrals, they can also be 

represented using polynomials, as is commonly done when evaluating them.  Appendix A1 

Polynomial Forms of SH Basis are the polynomial forms of the basis functions for the first 6 

bands.  An order n SH expansion uses all of the basis functions through degree n-1. 

  

 

  

 

   

 

     



Spherical Harmonics can be visualized in a couple of ways.  One standard way is to distort a unit 

sphere, by scaling each point radialy by the absolute value of the function and coloring it based 

on the sign (red for positive, blue for negative.)  Above are images of the first three bands using 

this technique. 

The functions in the central column (l=0) are called zonal harmonics (ZH) and will be discussed 

later, these functions have rotational symmetry around the z axis and the zeros (locations where 

the function is zero) are contours on the sphere parallel to the XY plane.  The functions where 

(l=|m|) are called sectorial harmonics and the zeros define regions like apple slices. 

An alternative visualization is to draw them using the parameterization of a cube map unfolded 

onto the plane.  The unfolding of the cube map is as follows: 

 +Y  

-X -Z +x 

 -Y  

 +Z  

Here magnitude is encoded with color (red positive, blue negative, zero green) and iso-intensity 

contours have been evenly placed (white lines) to give more intuition for the gradient of the 

function (when they bunch together the function is changing faster, etc.)   

  

 

  

 

   

 

     



 

Projection and Reconstruction  Because the SH basis is orthonormal the least squares 

projection of a scalar function f defined over S is done by simply integrating the function you 

want to project, 𝑓 𝑠 , against the basis functions (proof in Appendix A5 Least Squares 

Projection) 

𝑓𝑙
𝑚 =  𝑓 𝑠 𝑦𝑙

𝑚 𝑠  𝑑𝑠 

These coefficients can be used to reconstruct an approximation of the function f 

𝑓  𝑠 =   𝑓𝑙
𝑚𝑦𝑙

𝑚  𝑠 

𝑙

𝑚=−𝑙

𝑛

𝑙=0

 

Which is increasingly accurate as the number of bands n increases.  This paper concentrates on 

low-frequency approximations to f, for higher frequency representations other bases tend to do 

a better job.  Projection to n-th order generates n2 coefficients.  It is often convenient to use a 

single index for both the projection coefficients and the basis function, via 

𝑓  𝑠 =  𝑓𝑖𝑦𝑖 𝑠 

𝑛2

𝑖=0

 

Where i=l(l+1)+m .  This formulation makes it clear that evaluating at direction s of the 

approximate function is simply a dot product between the n2 coefficient vector fi and the vector 

of evaluated basis functions yi(s).  The first coefficient (𝑓0
0 or 𝑓0 depending on indexing) 

represents the average value of the function over the sphere and will sometimes be referred to 

as the DC term. 

Basic Properties  One important property of SH is how projections interact with rotations.  

Given a function g(s), which represents a function f(s) rotated by a rotation matrix Q, so g(s) = 

f(Q(s)) the projection of g is identical to rotating 𝑓  and re-projecting it.  This rotational 

invariance is similar to the translational invariance in the Fourier transform.  This means that, for 

example, lighting will be stable under rotations, so there won’t be any aliasing artifacts or 

“wobbling” of the light sources.  Below are images of a sphere illuminated by a directional light 

source, the top row is using SH, the bottom row is using the Ambient Cube basis3 from Valve 

[26].  The first column is a best case orientation, and the second is near a worst case one.  The 

image is invariant using SH.  This basis is discussed in more details in Appendix A8 Ambient Cube 

Basis.  This will happen to some extent with any other basis defined over the sphere. 
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 This basis is more efficient to evaluate compared to SH, having 6 basis functions with only 3 being non-

zero at any point on the sphere. 



SH 

  

HL2 

  
 “good” “bad” 

 

Due to the orthonormality of the SH basis, given any two SH functions a and b, the integral of 

the product is simply the dot product of the coefficient vectors:  𝑎  𝑠 𝑏  𝑠 =  𝑎𝑖𝑏𝑖
𝑛2

𝑖=0  

Convolution  Given a kernel function h(z) that has circular symmetry, you can generate a new SH 

function that is the result of convolving the kernel with an original function f.  h must have 

circular symmetry for the result of the convolution to also be represented on the sphere S, 

instead of the rotation group SO(3).  The convolution can be done directly in the frequency 

domain using the following equation: 

 𝑕 ∗ 𝑓 𝑙
𝑚 =  

4𝜋

2𝑙 + 1
𝑕𝑙

0𝑓𝑙
𝑚  

This amounts to simply scaling each band of f by the corresponding m=0 term from h. 

Rotation  As mentioned before, the SH are closed under rotation.  SH rotation matrices are in a 

block structure, where each band is rotationally independent and has a dense (2l+1)x(2l+1) sub-

matrix.  There are several ways to compute these rotation matrices, for very small orders 

(quadratic and less) doing so symbolically is most efficient, but for higher orders it seems to be 

more efficient to decompose the rotation matrix into zyz Euler angles [19]. 

Zonal Harmonics  Spherical harmonic projections of functions that have rotational symmetry 

around an axis are called Zonal Harmonics (ZH.)  If they are oriented so that this axis is Z, the 



zeros of the function will form lines of constant latitude and the functions only depend on 𝜃.  

The coefficient vector in this orientation only has one non-zero per band, so a n-th order 

function has n instead of n2 coefficients.  Zonal Harmonics have been used to approximate 

transfer [44], and are the common representation of phase functions in scattering theory 

[7][17], they will be used extensively in this paper when modeling light sources.  Rotation of 

Zonal Harmonics is simpler than general SH, it can be done with what is effectively a diagonal 

matrix and only requires evaluating the SH basis functions in the new direction d.  Given the ZH 

coefficients of a function (only the m=0 terms from an SH projection) zl it can be rotated to a 

new direction d using this equation: 

𝑓 𝑠 =  𝑧𝑙 
4𝜋

2𝑙 + 1
 𝑦𝑙

𝑚  𝑑 𝑦𝑙
𝑚 𝑠 

𝑚𝑙

 

So the resulting SH coefficients are: 

𝑓𝑙
𝑚 =  

4𝜋

2𝑙 + 1
𝑧𝑙𝑦𝑙

𝑚  𝑑  

SH Products  The kth coefficient of the product of two functions f and g represented using nth 

order SH projected into SH has the following form: 

𝑝𝑘 =  𝑦𝑘 𝑠   𝑓𝑖𝑦𝑖 𝑠 

𝑛2

𝑖=0

   𝑔𝑗𝑦𝑗  𝑠 

𝑛2

𝑗=0

 𝑑𝑠 =  Γ𝑖𝑗𝑘 𝑓𝑖𝑔𝑗
𝑖𝑗

 

Where Γ is the triple product tensor: 

Γ𝑖𝑗𝑘 =  𝑦𝑖 𝑠 𝑦𝑗  𝑠 𝑦𝑘 𝑠 𝑑𝑠 

an order 3 sparse symmetric tensor.  Since SH are polynomials, the polynomial product will have 

maximal degree 2n-2, which means it will have non-zero coefficients through order 2n-1.  This 

becomes unwieldy as the number of functions being multiplied grows, so it is common to 

truncate the product early [55][37].The number of non-zero coefficients as a function of n is 

quite large [47][37] so care has to be taken when generating efficient code.  One special case 

that is useful to point out is that if the function f is fixed (ie: distant lighting) you can compute a 

“product matrix” Mf  which will significantly reduce the cost.  This matrix is symmetric and built 

using the following equation:  

 Mf ij =  Γ𝑖𝑗𝑘 𝑓𝑖
k

 

Computing the product with a function g in this case is simply a matrix vector product. 



Irradiance Environment Maps 
An irradiance environment map is created by convolving a light probe with a clamped cosine 

function; this should be normalized by dividing by 𝜋 to display radiance.  This convolution can be 

done efficiently using SH [35], and is accurate enough to be efficiently rendered directly from SH 

as well.  Order 3 SH do a good job approximating this kernel, but if HDR light sources are going 

to be used you might want to consider using Order 5 (the order 4 ZH coefficient is zero so that 

band can be skipped.)  Below are images of the clamped cosine kernel and the order 3 SH 

approximation, the red curve is the SH approximation, the figure on the left is a plot as a 

function of theta, on the right a polar plot scaled by the absolute value of the function: 

  
 

Below are plots that also includes the Order 5 projection (blue): 

  



The Order 3 SH approximation over estimates by 1/16th at theta=0 (north pole) and has a 

spurious lobe at the south pole with magnitude of 1/16th.  A directional light source that would 

reflect a value of 17 when a normal points at it would reflect a value of 1 pointing in the 

opposite direction (should be reflecting 0.)  The order 5 approximation has a negative lobe, 

which would reflect -1 with a directional light that would reflect 31 with a normal pointing right 

at it.  While these approximations are accurate, the approximation can cause error, particularly 

if very bright light sources are being used.   

Appendix A9 Shader/CPU code for Irradiance Environment Maps contains shader and CPU code 

for efficiently evaluating irradiance environment maps. 

Lighting Models 
There are various ways of representing lighting in SH.  The simplest is to just project from a cube 

map, but there are also analytic models that are inexpensive to evaluate and potentially useful 

to expose to artists.  A recent paper [14] does a nice job of projecting a practical skylight model 

[34] into SH and fits a global polynomial of the SH coefficients over the parameter space of the 

model. 

Projection from Cube Maps 
To project from a cube map you simply need to integrate the SH basis functions against the cube 

map.  This can be done numerically by evaluate the SH basis functions in the direction of each 

texel center, weight it by the differential solid angle for that texel and normalize the results.  In 

pseudo-code: 

float f[],s[]; 

float fWtSum=0; 

Foreach(cube map face) 

 Foreach(texel) 

  float fTmp = 1 + u^2+v^2; 

  float fWt = 4/(sqrt(fTmp)*fTmp); 

  EvalSHBasis(texel,s); 

  f += t(texel)*fWt*s; // vector 

  fWtSum += fWt; 

f *= 4*Pi/fWtSum; // area of sphere 

 

In the code above u and v represent the two coordinates on the given face that are not +/- 14, 

t(texel) is the texel color. EvalSHBasis needs to normalize the input coordinate (on a cube face), 

and simply evaluate the SH basis functions in that direction.  The last normalization can be 

omitted (instead you can just divide by the number of samples), since the normalized sum of the 
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 Ie: on the +X face, it would be y/z, etc. 



Figure 1 Spherical Light Source 

r 

C 

d 

P 

differential solid angles should be 4*Pi, but it tends to be a little off (particularly when using low 

resolution cube maps.)   

Below are images of the reconstruction of a HDR light probe into order 1 to 6 Spherical 

Harmonics.  The final image is the light probe that was projected. 

    

  

… 

 
 

Analytic Models 
Directional lights are trivial to compute, you simply evaluate the SH basis functions in the given 

direction and scale appropriately (see Normalization section.)  Spherical Light sources can be 

efficiently evaluated using zonal harmonics.  Below is a diagram showing an example scene, we 

want to compute the incident radiance, a spherical function, 

at the receiver point P.  Given a spherical light source with 

center C, radius r, what is the radiance arriving at a point P d 

units away?  The sin of the half-angle subtended by the light 

source is r/d, so you just need to compute a light source that 

subtends an appropriate part of the sphere.  The ZH 

coefficients can be computed in closed form as a function of 

this angle: 𝑧𝑙 =   𝑦𝑙
0𝑑𝜑𝑑𝜃

2𝜋

𝜑=0

𝑎

𝜃=0
 where a is the half-angle 

subtended.  See Appendix A2 ZH Coefficients for Spherical 

Light Source for the expressions through order 6. 



The spherical technique can also be used to model a cone (think of it as a disc at infinity) with 

constant emission.  A softer cone can be modeled that has a smooth fall-off over the visible 

portion5 – see Appendix A3 ZH Coefficients for Smooth Cone for the equations. 

The columns are for orders 4 and 6, the top row is the projection of a cone and the bottom row 

is a cone that has a smooth fall off.  The angles are 90 (green), 45 (red), 30 (blue), 12.5 (black) 

degrees.  The dashed lines represent the actual function (slightly displaced for the cone so they 

don’t overlap), the solid lines are the SH approximation. In general the soft cone is better 

behaved.  How to address the artifacts that arise in projection is the subject of the section on 

Ringing below. 

  

  
Order 4 Order 6 
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 An “ease spline” is used, this is a cubic polynomial f(x) that has the constraints 

f(0)=1,f’(0)=0,f(a)=0,f’(a)=0, the unique cubic polynomial is: 𝑓 𝑥 = 2𝑥3

𝑎3 − 3𝑥2

𝑎2 + 1 



Normalization 

If [0,1] lighting is being used, it is convenient to normalize the radiance vector so that the 

reflected radiance for an unshadowed receiver with a normal pointing directly at the light 

source would be 1.0.  Mathematically you want to compute a scale factor c, that when 

multiplied by the lighting vector L will result in unit reflected radiance when integrated against a 

vector T that represents an unoccluded clamped cosine lobe (projection of normalized clamped 

cosine into SH.)  So you have: 

1 =  𝑐𝐿 𝑠 𝑇 𝑠 𝑑𝑠 
𝑦𝑖𝑒𝑙𝑑𝑠
      𝑐 =

1

𝑑𝑜𝑡 𝐿, 𝑉 
 

Only the bands that are going to be used for rendering should be used when computing the 

normalization factor.  Aligning T with +Z gives a simple analytic formula; here are the 

coefficients of T for the first 6 bands: 

1

2 𝜋
,
 3

3 𝜋
,
 5

8 𝜋
, 0,

−1

16 𝜋
, 0 

For analytic lights you can use an analytic normalization term, for the cone light of angle a that 

would be: 

1

sin2 𝑎
 

However the resulting lights will not reflect unit radiance, because the projection error of both 

the clamped cosine function and the light source will not be taken into account.  For directional 

lights6 the normalization factor is 
16𝜋

17
 and for “ambient” lights it is 

2

 𝜋
. 

Extracting Conventional Lights from SH 
Given an SH lighting vector, it is possible to approximate it as a single directional light source 

and an ambient light source.  This has been used on hardware that does not support vertex 

shaders.  Mathematically we want to compute the intensity of a directional light (c) and the 

intensity of an ambient light source (a), so that squared error of reflected radiance is minimized 

for any surface normal (N).  Assuming a fixed direction (d) for the light source, the error function 

we want to minimize is: 

𝐸 𝑐, 𝑎 =   𝑐𝐻𝑁 𝑑 + 𝑎 −  𝐿𝑒 𝑠 𝐻𝑁 𝑠 𝑑𝑠 
2

𝑑𝑁 

Where 𝐻𝑁 𝑥 = 𝑚𝑎𝑥 𝑑𝑜𝑡 𝑁, 𝑥 𝜋 , 0  is the normalized clamped cosine.  If the lighting 𝐿𝑒 𝑠  is 

expressed in SH, this has a simple solution.  The irradiance environment map represented by the 

new lighting environment should be as close to the input irradiance environment map – 
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 This is assuming no higher than 4

th
 order lighting, for 5

th
 or 6

th
 order the normalization factor is 

32𝜋

31
 



minimizing squared error of these two environment maps is equivalent to minimizing reflected 

radiance over all normals: 

𝐸 𝑐, 𝑎 =   𝑐𝐿𝑑 𝑠 ∗ 𝐻𝑁 𝑠 + 𝑎𝐿𝑎 𝑠 ∗ 𝐻𝑁 𝑠 − 𝐿𝑒 𝑠 ∗ 𝐻𝑁 𝑠  
2
𝑑𝑠 

Here 𝐿𝑑 𝑠  is a normalized SH directional light in direction d, and 𝐿𝑎 𝑠  is a normalized SH 

constant light (just depends on DC.)  The optimal values a and c are: 

𝑐 =
867

316𝜋
 𝑑𝑜𝑡0 𝐿 𝑑 , 𝐿 𝑒 

𝑎 =  𝐿 𝑒[0] − 𝑐
8 𝜋

17
 
 𝜋

2

 

The lighting vectors above are all turned into irradiance environment maps through convolving 

with the normalized clamped cosine kernel.  The dot product above ignores the DC term and 

𝐿 𝑒[0] is the DC term of the lighting environment.  The above assumes a known direction, a good 

candidate direction is the “optimal linear” direction [44], formed by normalizing the vector 

(−𝐿 𝑒 3 , 𝐿 𝑒 2 , −𝐿 𝑒[1]), which are the linear coefficients of the lighting environment. 

Extracting Multiple Lights 
It is also possible to extract multiple lights from a SH light probe.  This might be done to combat 

ringing (analytic lights won’t have negative lobes), to model glossy reflection (just from the light 

sources pulled out in this manner) or to use a small number of shadow zbuffers (pull the lights 

out for both diffuse and glossy parts of the BRDF.)  The optimal linear direction works well when 

a light probe is dominated by a single light source, when this isn’t the case the directions and 

intensities of the lights should be optimized for in some fashion.  One thing to do is to climb “up 

hill” to find local maxima of the function.  Given how smooth SH are, for a given order there is a 

finite distance where any point that distance from a distinct peak is guaranteed to reach the 

point using gradient ascent.  A set of points can be generated with the property that the point 

on the sphere farthest from the center of its Voronoi7 cell is less then this distance.  If you start 

your search from each of these points you should find all of the point local maxima. These 

distances can be found by looking at the projection of a delta function and computing the 

angular distance between peaks and the zeros.  Using a conservative estimate of two thirds this 

radius the number of points needed per order are {1,3,6,10,15,22} for the first 6 orders. 

This point set can be computed by computing a simulation:  All points have a force with a certain 

fall-off (say 1/d2 where d is the Euclidean distance between them) that acts on every other 

point.  Generate the net force acting on each point, and subtract off the normal component (so 

it is just a tangential force), move the points by this force with a weight w.  If the net sum of 
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 Given a set of points X on the sphere, the Voronoi cell of a given point xi consists of all the points on the 

sphere that are closer to xi than any other point in the set. 



forces increases, decrease w by half and try again, if it decreases double w and try again.  This is 

solving for a set of electrons that minimize the sum of the electrostatic charges.. 

Given a SH lighting environment L(s), you want to find a point on the sphere that is a local 

maximum, which is the same as finding a local minima of –L(s).  This is a non-linear optimization 

problem, a small number of BFGS iterations [29] converge on the peaks in my experience.  The 

gradients of the basis functions need to be computed when using optimization methods.  For a 

point on the sphere differentiating the polynomials is trivial, but you need to allow the point to 

go off the sphere when doing a line search, so you want to use symbolic inputs that normalize 

the coefficients (ie: 𝑓  
𝑥

 𝑥2+𝑦2+𝑧2
,

𝑦

 𝑥2+𝑦2+𝑧2
,

𝑧

 𝑥2+𝑦2+𝑧2
  in place of   𝑓 𝑥, 𝑦, 𝑧 ).  This is done by 

simply computing the gradient at the normalized location, and multiplying it by the Jacobian of 

the normalization function: 

 
 
 
 
 
 
 
𝐿2 − 𝑥2

𝐿3

−𝑥𝑦

𝐿

−𝑥𝑧

𝐿
−𝑥𝑦

𝐿

𝐿2 − 𝑦2

𝐿3

−𝑦𝑧
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Where L is  𝑥2 + 𝑦2 + 𝑧2. 

    

    
Original 3 direction 2 directions 1 directions 

 



These images compare radiance (top row) and irradiance (bottom row) lighting environments 

when approximating with 3, 2 or 1 directional lights and a ambient light.  Given the N most 

significant peaks (in terms of magnitude) this solves for directional and ambient intensities in a 

least squares sense. 

 The equations to compute the light intensities for two lobes are: 
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Where: 

𝐴 = 𝐿𝑑0 ∘ 𝐿𝑑0 , 𝐵 = 𝐿𝑑0 ∘ 𝐿𝑑1 

The ambient term is then: 

𝑎 =  𝐿𝑒 0 −  𝑐0𝐿𝑑0[0] + 𝑐1𝐿𝑑1[0]  
 𝜋

2
 

For three lights the intensities are: 
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Where: 

𝐶 = 𝐿𝑑0 ∘ 𝐿𝑑2 , 𝐷 = 𝐿𝑑1 ∘ 𝐿𝑑2,𝐸 = 2𝐵𝐶𝐷 + 𝐴 𝐴2 − 𝐵2−𝐶2 − 𝐷2  

This matrix is symmetric, and the ambient coefficient is: 

𝑎 =  𝐿𝑒 0 −  𝑐0𝐿𝑑0[0] + 𝑐1𝐿𝑑1[0] + 𝑐2𝐿𝑑2[0]  
 𝜋

2
 

The derivations of the equations are in Appendix A4 Solving for Coefficients to Approximate SH 

Environment Map with Directional and Ambient Lights. 

Adding all of the degrees of freedom (directions and intensities) and using a non-linear solver 

would generate higher quality results, possibly using the technique above as an initial guess. 



Ringing 
Ringing, also called Gibbs Phenomenon, is a common problem in signal processing.  When a 

signal with a discontinuity is projected into a finite Fourier basis (which can only represent 

continuous functions) overshoot and undershoot will happen around the discontinuity.  

Functions that don’t have discontinuities can exhibit similar behavior if the projection is 

truncated.  We have already seen these problems when looking at lighting models, and in 

representing irradiance environment maps (projection of clamped cosine function.)  A similar 

problem occurs in surface design, where when trying to satisfy a set of geometric constraints 

unwanted oscillations can occur.  There are two general solutions to these problems: 

1)  Windowing the truncated projection coefficients using sigma factors.  This is the most 

common solution in signal processing, and can be trivially used with Spherical 

Harmonics [8][41][37]. 

2) Minimizing some form of variational function (minimizing a measure of curvature for 

example), instead of just the standard least-squares error.  This is commonly done in 

computer aided geometric design, but also can be efficiently done using Spherical 

Harmonics [38]. 

Windowing8 
One way to minimize the ringing artifacts is to multiply in the frequency domain (which is a 

convolution in the spatial domain) by a kernel with projection coefficients that taper to zero as 

you approach the cut-off frequency.  If this function is a sinc9 that is stretched out so that it 

reaches zero at the truncated frequency band, it is called using Lanczos sigma factors10.  

Intuitively what this is doing (in 1D) is convolving in the spatial domain with a tight box function, 

making the function smooth enough to be 

represented without excessive ringing.  There are 

more sophisticated ways to attack Gibbs phenomena 

[10][4] but they use the SH coefficients to generate 

piecewise analytic functions that would not be as 

convenient for games. 

In our experience the choice of windowing function is 

not as important as having flexibility to trade off 

between ringing and blurring.  The image to the left 

shows the two windowing functions (red is sinc, blue 

is raised cosine lobe – called a Hanning window) 

                                                           
8
 The more common use of the term “windowing” in signal processing is used in the spatial domain – 

when filtering images the spatial extent of the filter is “windowed”, and when taking a FFT of a 1D signal 
the signal might be scaled to make it periodic.  In this paper it is being done in the frequency domain. 
9
 sinc 𝑥 =

sin 𝑥

𝑥
 where the limit is 1.0 when x=0. 

10
 Sometimes the sigma factors will be raised to a power to more aggressively reduce the Gibbs 

phenomena – which is the same as repeatedly convolving the signal. 



scaled for 6th order SH (so they reach zero for the 7th order band, the last value used would be 

evaluated at 5 and the functions would only be evaluated at the integers.)  The Hanning function 

decays faster than the Lancosz function, which makes it blur more aggressively11.  

Equation W=6 W=10 

sin
𝜋𝑥
𝑤

𝜋𝑥
𝑤

 

  

 1 + cos
𝜋𝑥
𝑤  

2
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 The Lancosz squared is close to the Hanning function, but decays a bit faster.  For the reconstruction of 
the delta function to be a height of 2.25, the Hanning function needs a window of size 12.0105 and the 
Lancosz needs one of size 9.8725.  The results look visually indistinguishable. 



Above we show the results using Lanczos and Hanning sigma factors.  The signal being projected 

is an order 6 delta function, which is the “peakiest” signal you can project into SH and exhibits 

ringing artifacts.  The projection of a delta function is a ZH, so we are showing a cross section of 

the sphere, phi is fixed.  Radial magnitude is plotted, the sign of the lobes alternate. 

Looking at all the graphs together (red is the raw projection of the delta function) you can see 

how windowing blurs the signal while eliminating the rings (visible near the origin in the figures.) 

Hanning Lancosz 

  
 

Minimizing a Functional 
An alternative approach is to try and minimize some function besides squared approximation 

error.  One way to do this is to satisfy a set of constraints (for example exact reconstruction at a 

small number of points) and then use the “slack” variables left over (assuming there are enough 

degrees of freedom) to minimize some error functional[38].  Given the low SH order often used 

in games/graphics, this approach does not seem that practical so I will not spend any more time 

on it.  An alternative is to attempt to minimize a norm that penalizes large oscillations.  This can 

be done with Spherical Harmonics in a straightforward fashion.  The Laplace operator, or 

Laplacian, is the divergence of the gradient of a scalar function; equivalently it is the sum of 

unmixed partial derivatives  



Δ𝑓 =
𝑑𝑓2

𝑑𝑥2
+
𝑑𝑓2

𝑑𝑦2
+
𝑑𝑓2

𝑑𝑧2
 

 In spherical coordinates on the unit sphere this is 

Δ𝑓 =
1

sin𝜃

𝑑

𝑑𝜃
 sin𝜃

𝑑𝑓

𝑑𝜃
 +

1

sin2 𝜃

𝑑2𝑓
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The integral of the squared Laplacian is a curvature measure used on the sphere [38].  The 

function we are going to minimize is:  

𝐸 𝑐 =   𝑓  𝑠 − 𝑓 𝑠  
2
𝑑𝑠 + 𝜆  Δ𝑓  𝑠  

2
𝑑𝑠 

We will tweak this a little bit, we already know the raw projection coefficients 𝑓𝑙
𝑚 , so we want 

to find new coefficients 𝑐𝑙
𝑚  that are as close to the least squares result as possible, while also 

minimizing the weighted squared Laplacian.  This can be done in closed form [see Appendix A5 

Least Squares Projection], which given a 𝜆 results in the following coefficients.  

𝑐𝑙
𝑚 =

𝑓𝑙
𝑚

 1 + 𝜆𝑙2 𝑙 + 1 2 
 

Note that this amounts to a windowing function that is dependent on 𝜆 .  When 𝜆 is zero, you 

get the least squares coefficients, when 𝜆 is infinity you get just the DC term, which has zero 

curvature.  One approach to choosing 𝜆 is to solve that it reduces the squared Lalpacian by a 

fixed amount, say one half.  This can be done using any standard root finding technique.  See 

[Appendix A6 Solving for Lamba to Reduce the Squared Laplacian] for an explanation of how to 

do this using Newtons method.  Below are the results with a 6ht order delta function solving for 

the squared Laplacian to be 10% (𝜆 = .004209 green) and 50% (𝜆 = .000632 blue) of the 

original.  The final plot has them along with the delta function itself: 

Δ2=0.1 Δ2=0.5 Composite 

   



 

Here are images using an actual lighting environment.  The first column of images are contour 

plots (blue is negative) of the second column of images - windowing with a broad (smoother) 

window.  The forth column of images are contour plots of the third column – smoothing with a 

narrower (less blurry) filter.  The top row is the original image – all results are shown at 6th 

order: 

Original 

    
Cos 

    
Sinc 

    
Δ2 

    
 

Windowing should be used judiciously.  When using irradiance environment maps, the 

convolution with the clamped cosine function aggressively attenuates high frequencies and 



windowing is rarely necessary.  Also scenes where there is a lot of normal variation tend to not 

show off the ringing artifacts as much as ones where the normals of the receiver are smoother.  

Below are images of a simple scene (“door” and a ground plane) that show how windowing 

affects the shaded result.  An area where ringing occurs is highlighted in the second row. 

   

   
No Windowing Hanning 6 Hanning 10 

 

When using HDR, or just moderately bright lights, ringing is a more severe problem and even 

irradiance environment maps might need some amount of windowing 

Another problem that can happen with ringing is color artifacts.  In the images below we have a 

sphere illuminated with a bright directional yellow light (almost rim lit from the upper right, 

order 6) and a moderate ambient white light.  The top row uses irradiance environment maps, 

the bottom row uses order 6 PRT (so a more accurate approximation of the cosine kernel is 

used.)  The first column is without windowing, the second column uses a Hanning window of 

order 4 on the top row and order 5 on the bottom.  The unwindowed version shows both the 

positive lobe (order 3, negative order 6) and the blue bands are from the negative rings of the 

directional light (remove red/green from the ambient light, but leave the blue alone.) 



Order 3 

  

Order 6 

  
 No Windowing Hanning 

 

Content Sensitive Windowing 
Lighting can be globally windowed, but you can also window depending on the influence the 

rings will have on the final shaded image.  An example is illustrated below.  We are rendering a 

somewhat matte (but not diffuse – phong with power 10) ball using a bright directional light 

source (the highlight is saturating.)  If no windowing is applied, the principle highlight is sharper, 

but artifacts from the rings are clear.  If the lighting is windowed, the rings disappear but the 

principle highlight is blurred as well.  Instead you can look at the angle between the reflection 

vector and the dominant light direction, if this is small, no windowing is necessary, as it 

increases you can blend between the windowed and non-windowed light source, preserving the 

sharp highlight while eliminating the ringing artifacts.  This sequence of images is shown below: 



   
6th order reflection Windowed (Hanning 7) Content sensitive windowing 

 

The equation used to control the blending is: 

𝑤𝑎 =  𝑚𝑎𝑥  0,
  𝑛 ∘ 𝑟 − 𝑐𝑡 

1 − 𝑐𝑡
  

𝑝

 

Where 𝑤𝑎  is the weight of the un-windowed light source (windowed is 1 − 𝑤𝑎 ), 𝑐𝑡  is a threshold 

that determines when you completely use the windowed light source and 𝑝 controls the 

transition region of the blend. In this figure 𝑐𝑡  is 0.07 and 𝑝 is 0.8.  You can experiment with 

these parameters, the thresholds will largely be based on the amount of windowing and the 

material properties. 

If the light source is not a directional one, you can compute how well it can be approximated by 

a directional light source and take that into account when deciding how much to blend (the 

simplest way would be to compute a tensor product between how close the lighting 

environment is approximated by a directional light and how close the normal/reflection vector is 

to the dominant light vector.)  For more complex shading, say for example PRT, the dominant 

transfer direction can be used, and how well it approximates the transfer function can be yet 

another factor in the tensor product (so you window when any one of the terms isn’t 

approximated well.) 

If the lighting is very dynamic, you will need to watch out for temporal artifacts that could occur 

as the lights change (ie: shadows/reflections would become sharper, etc.)  For things like static 

SH light probes this technique should work well though. 

SH Products 
Computing the SH representation of the product of two functions represented using SH is often 

useful.  Example scenarios are: 

3) Punch a hole in a skylight model based on a large flying object (visibility times light), or a 

simple visibility model of the scene (large buildings, etc.) 



4) Multiply visibility functions.  This happens when doing dynamic approximate global 

illumination. 

5) Scale or modify a SH light probe.  Multiplying by a some constant between zero and 1 

can be used to approximate clouds for example. 

Computing a product in the frequency domain is quite complex, it boils down to applying a 

“triple product tensor” times the two SH vectors.  Code for this can be generated efficiently [47] 

and will not be described in this paper.  There are several special cases that are worth 

mentioning though. 

Products with a Constant Function 
If one of the SH functions is going to be used a lot you can build a dense matrix called the 

product matrix, this makes the triple product a simple matrix times vector product, which is 

significantly less expensive.  An order 6 product would have 1296 multiplies instead of the 2527 

in the code generated by [47]. 

Products with varying Orders 
This is particularly common when the output order is lower, for example quadratic, so that you 

can represent a local radiance environment.  Special casing the code for these cases can 

significantly decrease the complexity of the code.  For example the product of two 6th order SH 

has 2527/1995 multiplies/adds when computing 6th order results, but only 933/67612 when 

computing 3rd order results.  Another example is simple ambient occlusion, in this case one of 

the terms is just DC, and so you simply have to scale the other vector by the DC value.  Finally, 

one of the two functions might be lower order (ie: just multiply by linear visibility) which can 

also reduce the cost. 

Product with Zonal Harmonics 
If one of the functions is a Zonal Harmonic, you can rotate the other function into that same 

frame (less expensive rotation, only need 2 Euler angles due to the symmetry), compute the 

product and rotate back.  The sparsity in the ZH frame eliminates a significant amount of work, 

which can increase performance. The product of two 6th order functions, one which is a ZH 

oriented in z, requires only 380/249 multiplies/adds.  For arbitrary ZH the time to compute one 

million products (where one of the functions is always a in an arbitrary orientation) is around 1.2 

seconds while the time to compute general 6th order products is just over 3 seconds, so this 

technique is almost 3 times faster. 

Product with Analytic Function 
If one of the functions has an analytic form, it is more accurate to analytically compute what 

amounts to the product matrix.  An example is zeroing everything under the horizon (useful if 

there is a ground plane) or taking a product with a clamped cosine function.  Doing this 
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 More efficient code could be generated, these results are using a naïve algorithm applied to the output 
of [47]. 



analytically is equivalent to having an infinite order expansion of the analytic function, and in 

general will be much faster than using a SH expansion in these cases.  The code for these two 

examples is in an appendix [Appendix A7 Code for Multiplying SH by Analytic Functions]. 

Conclusions 
Spherical Harmonics are extremely useful tool, particularly for lighting, in games.  Hopefully this 

article shed some light on how they can be used and how to mitigate some challenges that can 

arrive when using them.  The are several ways to extend the ideas discussed in this paper, 

windowing coefficients (using any window function) can be solved for that minimize the 

magnitude of a negative (or positive) lobe, or possibly the magnitude of reflected radiance when 

pointing in a direction that should be zero.  When extracting lights, more rigorous techniques 

based on non-linear optimization could be used [29][44] and more general lighting models (for 

example including the cone angles from the light sources discussed) could be extracted.  It also 

might be worth investigating tying windowing into the fitting process.  Initially fit with a 

smoothed version of the function, and then dial back the amount of windowing – effectively 

steering to better local minima.  The content sensitive windowing ideas need to be fleshed out, 

particularly when integrating with techniques like PRT. 

One tool that I’ve found to be invaluable when playing around with Spherical Harmonics is a 

symbolic math program.  I’ve used Maple (http://www.maplesoft.com), but other programs like 

Mathematica (http://www.wolfram.com) would work equally well.  The DirectX SDK 

(http://msdn.microsoft.com/directx) has functions for evaluation, rotation, products and several 

analytic lighting models, along with samples using both PRT and irradiance environment maps. 
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Appendix A1 Polynomial Forms of SH Basis 
The polynomial forms of the SH basis functions are listed below, L is the band index, M is the 

basis function.  Note that Maple randomly changes the order of L and M… 
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,{ },L 1 M 1 
3 x

2 

,{ },L 2 M -2
15 y x

2 

,{ },M -1 L 2 
15 y z

2 

,{ },M 0 L 2
5 ( )3 z2 1

4 

,{ },M 1 L 2 
15 x z

2 

,{ },M 2 L 2
15 ( )x2 y2

4 

,{ },M -3 L 3 
2 35 y ( )3 x2 y2

8 

,{ },M -2 L 3
105 y x z

2 

,{ },M -1 L 3 
2 21 y ( ) 1 5 z2

8 

,{ },L 3 M 0
7 z ( )5 z2 3

4 

,{ },M 1 L 3 
2 21 x ( ) 1 5 z2

8 

,{ },L 3 M 2
105 ( )x2 y2 z

4 

,{ },M 3 L 3 
2 35 x ( )x2 3 y2

8 

,{ },L 4 M -4
3 35 y x ( )x2 y2

4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

,{ },M -3 L 4 
3 2 35 y ( )3 x2 y2 z

8 

,{ },M -2 L 4
3 5 y x ( ) 1 7 z2

4 

,{ },M -1 L 4 
3 2 5 y z ( ) 3 7 z2

8 

,{ },L 4 M 0
3 ( ) 35 z4 30 z2 3

16 

,{ },M 1 L 4 
3 2 5 x z ( ) 3 7 z2

8 

,{ },L 4 M 2
3 5 ( )x2 y2 ( ) 1 7 z2

8 

,{ },M 3 L 4 
3 2 35 x ( )x2 3 y2 z

8 

,{ },M 4 L 4
3 35 ( ) x4 6 y2 x2 y4

16 

,{ },L 5 M -5 
3 2 77 y ( ) 5 x4 10 y2 x2 y4

32 

,{ },L 5 M -4
3 385 y x ( )x2 y2 z

4 

,{ },L 5 M -3 
2 385 y ( )3 x2 y2 ( ) 1 9 z2

32 

,{ },M -2 L 5
1155 y x z ( ) 1 3 z2

4 

,{ },M -1 L 5 
165 y ( )  14 z2 21 z4 1

16 

,{ },L 5 M 0
11 z ( ) 63 z4 70 z2 15

16 



 

 

 

 

 

 

Appendix A2 ZH Coefficients for Spherical Light Source 
Given a light source that subtends an angle a in radians here are the symbolic integrals for the 

first 6 bands: 

L=0  

L=1  

L=2  

L=3  

L=4  

L=5  

Appendix A3 ZH Coefficients for Smooth Cone 
Given a cone that subtends the angle a in radians, the light source has intensity 1 at the north 

pole, and falls off to zero at angle a.  At 6th order this function should not be evaluated with an 

angle less than about 8 degrees using single precision.  The derivative of the smoothing function 

is 0 at the north pole and a.  The first 6 bands are: 

,{ },L 5 M 1 
165 x ( )  14 z2 21 z4 1

16 

,{ },L 5 M 2
1155 ( )x2 y2 z ( ) 1 3 z2

8 

,{ },L 5 M 3 
2 385 x ( )x2 3 y2 ( ) 1 9 z2

32 

,{ },L 5 M 4
3 385 ( ) x4 6 y2 x2 y4 z

16 

,{ },L 5 M 5 
3 2 77 x ( ) x4 10 y2 x2 5 y4

32 

  ( ) 1 ( )cos a

1

2
3  ( )sin a 2


1

2
5  ( )cos a ( ) 1 ( )cos a ( )( )cos a 1


1

8
7  ( ) 1 ( )cos a ( )( )cos a 1 ( )5 ( )cos a 2 1


3

8
 ( )cos a ( ) 1 ( )cos a ( )( )cos a 1 ( )7 ( )cos a 2 3


1

16
11  ( ) 1 ( )cos a ( )( )cos a 1 ( ) 21 ( )cos a 4 14 ( )cos a 2 1



 

 

 

 

 

 

 

 

 

 

 

Appendix A4 Solving for Coefficients to Approximate SH 

Environment Map with Directional and Ambient Lights 
You can compute the intensity s that minimizes the approximation error between a directional 

light in direction d and the original lighting environment: 

𝐸 𝑐 =  𝐿𝑒 − 𝑐𝐿𝑑 
2 

Where 𝐿𝑒  is the SH representation of the lighting environment, 𝐿𝑑  is the SH representation of 

the lighting model in direction d13.  The solution is: 

                                                           
13

 You can optimize using either radiance (leave vectors alone) or irradiance (convolve vectors.)  

( )  a3 6 a 12 ( )sin a 6 ( )cos a a 

a3

1

4

3 ( ) a3 3 ( )cos a ( )sin a 3 ( )cos a 2 a 

a3

1

9

5 ( )    6 a 2 ( )cos a 2 ( )sin a 9 ( )cos a a 14 ( )sin a 3 ( )cos a 3 a 

a3

1

256
7 (

    4 a3 15 a 108 ( )cos a 2 a 30 ( )cos a 3 ( )sin a 63 ( )cos a ( )sin a 60 ( )cos a 4 a )

 a3

1

1500
480 a 742 ( )sin a 596 ( )cos a 2 ( )sin a 225 ( )cos a a 378 ( )sin a ( )cos a 4    (

1650 ( )cos a 3 a 945 ( )cos a 5 a  )  a3

1

3072
11 63 a 12 a3 350 ( )cos a 3 ( )sin a 1260 ( )cos a 4 a 15 ( )cos a ( )sin a    (

224 ( )cos a 5 ( )sin a 672 ( )cos a 6 a 540 ( )cos a 2 a   )  a3



𝑐 =
𝐿𝑒 ∘ 𝐿𝑑
𝐿𝑑 ∘ 𝐿𝑑

 

If you want to add an ambient light, you need to minimize the error function: 

𝐸 𝑐, 𝑎 =   𝑐𝐿𝑑 𝑠 ∗ 𝐻𝑁 𝑠 + 𝑎𝐿𝑎 𝑠 ∗ 𝐻𝑁 𝑠 − 𝐿𝑒 𝑠 ∗ 𝐻𝑁 𝑠  
2
𝑑𝑠 

Absorbing the convolution into the lighting and differentiate with respect to each variable: 

𝑑𝐸

𝑑𝑐
= 2  𝑐𝐿 𝑑 𝑠 + 𝑎𝐿 𝑎 𝑠 − 𝐿 𝑒 𝑠  𝐿 𝑑 𝑠 𝑑𝑠 

𝑑𝐸

𝑑𝑎
= 2  𝑐𝐿 𝑑 𝑠 + 𝑎𝐿 𝑎 𝑠 − 𝐿 𝑒 𝑠  𝐿 𝑎 𝑠 𝑑𝑠 

Now solve for the two equations equal to zero14 to find the minimum.  𝐿 𝑎 𝑠  is a scalar 

function15, and due to the orthogonality of SH the integrals are all simple dot products of SH 

vectors.  This leaves you with the following equations: 

𝑐𝐴 + 𝑎𝐵 = 𝐷
𝑐𝐵 + 𝑎𝐶 = 𝐸

 

Where: 

𝐴 =
508𝜋

867
, 𝐵 =

16

17
, 𝐶 =

4

𝜋
, 𝐷 = 𝑑𝑜𝑡 𝐿 𝑑 , 𝐿 𝑒 , 𝐸 = 𝑑𝑜𝑡 𝐿 𝑎 , 𝐿 𝑒  

Solving for c and a results in: 

𝑐 =
867

316𝜋
 𝑑𝑜𝑡 𝐿 𝑑 , 𝐿 𝑒 −

51

79
 𝑑𝑜𝑡 𝐿 𝑎 , 𝐿 𝑒 

𝑎 =
127𝜋

316
 𝑑𝑜𝑡 𝐿 𝑎 , 𝐿 𝑒 −

51

79
 𝑑𝑜𝑡 𝐿 𝑑 , 𝐿 𝑒 

 

It turns out there is a simpler way to arrive at the same results.  Solve for the intensity of a 

directional light where both the environment and the light don’t include the DC term, then 

computing an ambient term that reconstructs the environment DC term when using the scaled 

directional light.  This results in: 

𝑐 =
867

316𝜋
 𝑑𝑜𝑡0 𝐿 𝑑 , 𝐿 𝑒 

𝑎 =  𝐿 𝑒[0] − 𝑐
8 𝜋

17
 
 𝜋

2
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 The Hessian matrix is  
3 1
1 1

  which has positive eigenvalues (2 ±  2), so this is a minimum. 
15

 SH vector only has a non-zero in the DC term. 



In the above expression the dot product ignores the DC term and 𝐿 𝑒[0] is the DC term of the 

environment light.  We will use similar techniques for 2 and 3 lights (where the equations get 

much nastier if you handle a at the same time as the light intensities.) 

Multiple lights can be done in a similar manner, first by removing DC from all the light vectors, 

with two lights giving you this error function: 

𝐸 𝑐0 , 𝑐1 =   𝑐0𝐿𝑑0 𝑠 + 𝑐1𝐿𝑑1 𝑠 − 𝐿𝑒 𝑠  
2
𝑑𝑠 

Then differentiate with respect to each of the coefficients and solve for zero.  The following 

expression gives you the intensities: 

 
𝑐0

𝑐1
 =  

𝐴

𝐴2 − 𝐵2

−𝐵

𝐴2 − 𝐵2

−𝐵

𝐴2 − 𝐵2

𝐴

𝐴2 − 𝐵2

  
𝐿𝑒°𝐿𝑑0

𝐿𝑒°𝐿𝑑0
  

Where: 

𝐴 = 𝐿𝑑0 ∘ 𝐿𝑑0 , 𝐵 = 𝐿𝑑0 ∘ 𝐿𝑑1 

It is worth pointing out that A is constant independent of direction (it depends on order and if 

the vectors are convolved or not.)  The ambient term is then: 

𝑎 =  𝐿𝑒 0 −  𝑐0𝐿𝑑0[0] + 𝑐1𝐿𝑑1[0]  
 𝜋

2
 

For three lights the intensities are: 

 

𝑐0

𝑐1

𝑐2

 =

 
 
 
 
 
 
 
𝐴2 − 𝐷2

𝐸

𝐶𝐷 − 𝐴𝐵

𝐸

𝐵𝐷 − 𝐴𝐶

𝐸
𝐶𝐷 − 𝐴𝐵

𝐸

𝐴2 − 𝐶2

𝐸

𝐵𝐶 − 𝐴𝐷

𝐸
𝐵𝐷 − 𝐴𝐶

𝐸

𝐵𝐶 − 𝐴𝐷

𝐸

𝐴2 − 𝐵2

𝐸  
 
 
 
 
 
 

 

𝐿𝑒°𝐿𝑑0

𝐿𝑒°𝐿𝑑1

𝐿𝑒°𝐿𝑑2

  

Where: 

𝐶 = 𝐿𝑑0 ∘ 𝐿𝑑2 , 𝐷 = 𝐿𝑑1 ∘ 𝐿𝑑2,𝐸 = 2𝐵𝐶𝐷 + 𝐴 𝐴2 − 𝐵2−𝐶2 − 𝐷2  

This matrix is symmetric, and the ambient coefficient is: 

𝑎 =  𝐿𝑒 0 −  𝑐0𝐿𝑑0[0] + 𝑐1𝐿𝑑1[0] + 𝑐2𝐿𝑑2[0]  
 𝜋

2
 



Appendix A5 Least Squares Projection 
First we will show that for orthonormal basis functions, least squares projection actually is 

achieved by simply integrating against the basis functions.  We want to find the coefficient 

vector c that minimizes this expression: 

𝐸 𝑐 =    𝑐𝑖𝑦𝑖 𝑠 

𝑖

− 𝑓 𝑠  

2

𝑑𝑠 

This can be done by differentiating with respect to each coefficient, and solving the first 

derivatives for zero16 

𝑑𝐸

𝑑𝑐𝑘
= 2   𝑐𝑖𝑦𝑖 𝑠 

𝑖

− 𝑓 𝑠  𝑦𝑘 𝑠  𝑑𝑠 

Because the basis functions are orthonormal we know that  𝑦𝑖 𝑠 𝑦𝑗  𝑠 𝑑𝑠 = 𝛿𝑖𝑗  exploiting this 

fact and solving for zero we get 

𝑑𝐸

𝑑𝑐𝑘
= 0

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑐𝑘 =  𝑦𝑘 𝑠 𝑓 𝑠  𝑑𝑠 

So that direct integration gives you the least squares result. 

Now we derive the coefficient vector g that minimizes an error functional that includes a 

penalty based on the squared Laplacian integrated over the sphere.  We know from above the 

coefficient vector c that minimizes pure squared error.  We introduce a function h that is used to 

simplify indexing 

  Δ𝑓  
2
𝑑𝑠 =   𝑙2 𝑙 + 1 2 𝑓𝑙

𝑚  2

𝑙

𝑚=−1

𝑛

𝑙=1

=  𝑕𝑖 𝑓𝑖 
2

𝑛2

𝑖=0

 

The error function then is 

𝐸 𝑔 =    𝑔𝑖 − 𝑐𝑖 
2

𝑖

 + 𝜆 𝑕𝑖𝑔𝑖
2

𝑖

 

Differentiating you get 

𝑑𝐸

𝑑𝑔𝑘
= 2 𝑔𝑘 − 𝑐𝑘 + 2𝜆𝑕𝑘𝑔𝑘  

Solving for zero you get 

                                                           
16

 Second derivative mixed partials are all zero, unmixed partials are all 1, so the hessian is an identity 
matrix and we have a minima 



𝑔𝑘 =
𝑐𝑘

 1 + 𝜆𝑕𝑘 
 

Appendix A6 Solving for Lamba to Reduce the Squared Laplacian 
This can be done quite easily using Newtons method.  The squared Laplacian is: 

Δ2 =   𝑙2 𝑙 + 1 2 𝑓𝑙
𝑚 2

𝑙

𝑚=−1

𝑛

𝑙=1

=  𝑙2 𝑙 + 1 2   𝑓𝑙
𝑚 2

𝑙

𝑚=−1

𝑛

𝑙=1

=  𝐿𝑙𝐵𝑙

𝑛

𝑙=1

 

 

The array of L values (𝐿𝑙 = 𝑙2 𝑙 + 1 2 ) is static, and the array of B values can be computed 

𝐵𝑙 =   𝑓𝑙
𝑚 2𝑙

𝑚=−1 .  Newtons method takes an initial guess (0 works well for this problem) and 

refines it using the following recurrence: 

𝜆𝑛+1 = 𝜆𝑛 −
𝑓 𝜆𝑛 

𝑓′ 𝜆𝑛 
 

Where f is the function we are searching for a root and f’ is the first derivative.  Replacing 𝑓𝑙
𝑚  

with 𝑐𝑙
𝑚  which includes 𝜆 and factoring you have: 

𝑓 𝜆 = Δ2 − 
𝐿𝑙𝐵𝑙

 1 + 𝜆𝐿𝑙 
2

𝑛

𝑙=1

 

𝑓 ′ 𝜆 = 2 
𝐿𝑙

2𝐵𝑙
 1 + 𝜆𝐿𝑙 

3

𝑛

𝑙=1

 

Where Δ2is the original squared Laplacian.  Iterate until a maximum number of iteration has 

occurred, or the absolute value of successive approximations is below a threshold (1e-6 seems 

to work well in practice.)  This can be represented as a polynomial (multiplying through by the 

product of all the denominators) of degree  𝑛 − 1 2, where n is the order.  This would only be 

useful for quadratic and lower orders, where a closed form solution of the roots can be 

computed and even then it is not clear if it would be much faster than an iterative solution. 

Appendix A7 Code for Multiplying SH by Analytic Functions 
Below are two functions, both defined over the hemisphere.  The first is simply constant, which 

can be useful in scenes with a dominant ground plane.  The second is a clamped cosine in Z. 

// generates 6th order SH coefficients from multiplying 6th order lighting by hemisphere in Z 

 

void HemiMult(float *R, float *L) 

{ 

    R[0] = 0.433012702f * L[2] - 0.1653594569f * L[12] + 0.1036445247f * L[30] + 0.5f * L[0]; 

    R[1] = 0.5f * L[1] + 0.4192627457f * L[5] - 0.1711632992f * L[19]; 

    R[2] = -0.05412658775f * L[20] + 0.5f * L[2] + 0.2420614591f * L[6] + 0.433012702f * L[0]; 



    R[3] = 0.5f * L[3] - 0.1711632992f * L[21] + 0.4192627457f * L[7]; 

    R[4] = 0.5f * L[4] - 0.1713860232f * L[28] + 0.4133986423f * L[10]; 

    R[5] = -0.06477782793f * L[29] + 0.4192627457f * L[1] + 0.5f * L[5] + 0.2614562582f * L[11]; 

    R[6] = 0.5f * L[6] - 0.1448476267f * L[30] + 0.2420614591f * L[2] + 0.3697549864f * L[12]; 

    R[7] = -0.06477782793f * L[31] + 0.4192627457f * L[3] + 0.5f * L[7] + 0.2614562582f * L[13]; 

    R[8] = 0.5f * L[8] - 0.1713860232f * L[32] + 0.4133986423f * L[14]; 

    R[9] = 0.5f * L[9] + 0.41015625f * L[17]; 

    R[10] = 0.2685102947f * L[18] + 0.5f * L[10] + 0.4133986423f * L[4]; 

    R[11] = 0.360244363f * L[19] + 0.5f * L[11] + 0.2614562582f * L[5]; 

    R[12] = 0.2790440836f * L[20] + 0.5f * L[12] - 0.1653594569f * L[0] + 0.3697549864f * L[6]; 

    R[13] = 0.5f * L[13] + 0.360244363f * L[21] + 0.2614562582f * L[7]; 

    R[14] = 0.2685102947f * L[22] + 0.4133986423f * L[8] + 0.5f * L[14]; 

    R[15] = 0.41015625f * L[23] + 0.5f * L[15]; 

    R[16] = 0.408100316f * L[26] + 0.5f * L[16]; 

    R[17] = 0.2720668773f * L[27] + 0.5f * L[17] + 0.41015625f * L[9]; 

    R[18] = 0.2685102947f * L[10] + 0.35621916f * L[28] + 0.5f * L[18]; 

    R[19] = 0.2856107251f * L[29] - 0.1711632992f * L[1] + 0.5f * L[19] + 0.360244363f * L[11]; 

    R[20] = 0.2790440836f * L[12] + 0.5f * L[20] + 0.3498002708f * L[30] - 0.05412658775f * L[2]; 

    R[21] = 0.2856107251f * L[31] + 0.360244363f * L[13] + 0.5f * L[21] - 0.1711632992f * L[3]; 

    R[22] = 0.5f * L[22] + 0.35621916f * L[32] + 0.2685102947f * L[14]; 

    R[23] = 0.2720668773f * L[33] + 0.5f * L[23] + 0.41015625f * L[15]; 

    R[24] = 0.5f * L[24] + 0.408100316f * L[34]; 

    R[25] = 0.5f * L[25]; 

    R[26] = 0.408100316f * L[16] + 0.5f * L[26]; 

    R[27] = 0.5f * L[27] + 0.2720668773f * L[17]; 

    R[28] = 0.5f * L[28] - 0.1713860232f * L[4] + 0.35621916f * L[18]; 

    R[29] = -0.06477782793f * L[5] + 0.5f * L[29] + 0.2856107251f * L[19]; 

    R[30] = 0.3498002708f * L[20] + 0.1036445247f * L[0] - 0.1448476267f * L[6] + 0.5f * L[30]; 

    R[31] = -0.06477782793f * L[7] + 0.2856107251f * L[21] + 0.5f * L[31]; 

    R[32] = 0.5f * L[32] - 0.1713860232f * L[8] + 0.35621916f * L[22]; 

    R[33] = 0.5f * L[33] + 0.2720668773f * L[23]; 

    R[34] = 0.5f * L[34] + 0.408100316f * L[24]; 

    R[35] = 0.5f * L[35]; 

} 

// generates 6th order SH coefficients from multiplying 6th order lighting by clamped cos in Z 

 

void CosMult(float *R, float *L) 

{ 

    // constants to make code fit 

    const float T1 = 0.09547032698f; 

    const float T2 = 0.1169267933f; 

    const float T3 = 0.2581988897f; 

    const float T4 = 0.2886751347f; 

    const float T5 = 0.2390457218f; 

    const float T6 = 0.2535462764f; 

    const float T7 = 0.2182178903f; 

    const float T8 = 0.1083940384f; 

    const float T9 = 0.2519763153f; 

    const float TA = 0.2439750183f; 

    const float TB = 0.3115234375f; 

    const float TC = 0.2512594538f; 

    const float TD = 0.31640625f; 

 

    R[0] = 0.25f * L[0] - 0.03125f * L[20] + T4 * L[2] + 0.1397542486f * L[6]; 

    R[1] = 0.2236067977f * L[5] + T2* L[11] - 0.02896952533f * L[29] + 0.1875f * L[1]; 

    R[2] = 0.375f * L[2] + T4 * L[0] + T3 * L[6] - 0.01495979856f * L[30] + T1 * L[12]; 

    R[3] = 0.2236067977f * L[7] - 0.02896952533f * L[31] + T2* L[13] + 0.1875f * L[3]; 

    R[4] = 0.101487352f * L[18] + 0.1889822365f * L[10] + 0.15625f * L[4]; 

    R[5] = 0.2236067977f * L[1] + T5 * L[11] + 0.3125f * L[5] + 0.09568319309f * L[19]; 

    R[6] = T6 * L[12] + T3 * L[2] + 0.3125f * L[6] + 0.113550327f * L[20] + 0.1397542486f * L[0]; 

    R[7] = T5 * L[13] + 0.09568319309f * L[21] + 0.2236067977f * L[3] + 0.3125f * L[7]; 

    R[8] = 0.15625f * L[8] + 0.101487352f * L[22] + 0.1889822365f * L[14]; 

    R[9] = 0.09068895910f * L[27] + 0.1666666667f * L[17] + 0.13671875f * L[9]; 

    R[10] = T7 * L[18] + 0.2734375f * L[10] + 0.09068895910f * L[28] + 0.1889822365f * L[4]; 

    R[11] = T8 * L[29] + TA * L[19] + T5 * L[5] + 0.30078125f * L[11] + T2* L[1]; 

    R[12] = T9 * L[20] + 0.328125f * L[12] + T6 * L[6] + 0.1028316139f * L[30] + T1 * L[2]; 

    R[13] = 0.30078125f * L[13] + T8 * L[31] + TA * L[21] + T5 * L[7] + T2* L[3]; 

    R[14] = 0.2734375f * L[14] + 0.09068895910f * L[32] + 0.1889822365f * L[8] + T7 * L[22]; 

    R[15] = 0.0906889591f * L[33] + 0.13671875f * L[15] + 0.1666666667f * L[23]; 

    R[16] = 0.1507556723f * L[26] + 0.123046875f * L[16]; 

    R[17] = 0.24609375f * L[17] + 0.1666666667f * L[9] + 0.201007563f * L[27]; 



    R[18] = 0.101487352f * L[4] + T7 * L[10] + 0.2302830933f * L[28] + 0.28125f * L[18]; 

    R[19] = TD * L[19] + 0.09568319309f * L[5] + TA * L[11] + 0.2461829819f * L[29]; 

    R[20] = T9 * L[12] + TC * L[30] + 0.113550327f * L[6] - 0.03125f * L[0] + TD * L[20]; 

    R[21] = 0.2461829819f * L[31] + TA * L[13] + 0.9568319309e-1f * L[7] + TD * L[21]; 

    R[22] = 0.101487352f * L[8] + 0.28125f * L[22] + T7 * L[14] + 0.2302830933f * L[32]; 

    R[23] = 0.201007563f * L[33] + 0.1666666667f * L[15] + 0.24609375f * L[23]; 

    R[24] = 0.1507556723f * L[34] + 0.123046875f * L[24]; 

    R[25] = 0.1127929688f * L[25]; 

    R[26] = 0.2255859375f * L[26] + 0.1507556723f * L[16]; 

    R[27] = 0.9068895910e-1f * L[9] + 0.201007563f * L[17] + 0.2631835938f * L[27]; 

    R[28] = 0.2302830933f * L[18] + 0.9068895910e-1f * L[10] + 0.30078125f * L[28]; 

    R[29] = 0.1083940385f * L[11] + 0.2461829819f * L[19] - 0.02896952533f * L[1] + TB * L[29]; 

    R[30] = 0.322265625f * L[30] + TC * L[20] - 0.01495979856f * L[2] + 0.1028316139f * L[12]; 

    R[31] = 0.2461829819f * L[21] - 0.02896952533f * L[3] + TB * L[31] + 0.1083940385f * L[13]; 

    R[32] = 0.09068895910f * L[14] + 0.2302830933f * L[22] + 0.30078125f * L[32]; 

    R[33] = 0.09068895910f * L[15] + 0.201007563f * L[23] + 0.2631835938f * L[33]; 

    R[34] = 0.2255859375f * L[34] + 0.1507556723f * L[24]; 

    R[35] = 0.1127929688f * L[35]; 

} 

Appendix A8 Ambient Cube Basis 
The Ambient Cube basis is used by Valve [26]; it consists of 6 basis functions, each defined over 

a hemisphere: 

𝑉0 =  𝑥
2 𝑥 > 0

0 𝑥 ≤ 0
 , 𝑉1 =   

0 𝑥 > 0
𝑥2 𝑥 ≤ 0

  

𝑉2 =  
𝑦2 𝑦 > 0
0 𝑦 ≤ 0

 , 𝑉3 =   
0 𝑦 > 0

𝑦2 𝑦 ≤ 0
  

𝑉3 =  𝑧
2 𝑧 > 0

0 𝑧 ≤ 0
 , 𝑉4 =   

0 𝑧 > 0
𝑧2 𝑧 ≤ 0

  

This basis is not orthogonal, so coefficients cannot be generated by simply integrating against 

the basis functions.  To compute optimal projection coefficients you solve a linear least squares 

problem (similar to Appendix A5 Least Squares Projection, but without orthonormal basis 

functions): 

𝐸 𝑐 =    𝑐𝑖𝑉𝑖 𝑠 

𝑖

− 𝑓 𝑠  

2

𝑑𝑠 

Where the 𝑉𝑖 𝑠  are the Ambient Cube basis functions.  Differentiating you get: 

𝑑𝐸

𝑑𝑐𝑘
= 2   𝑐𝑖𝑉𝑖 𝑠 

𝑖

− 𝑓 𝑠  𝑉𝑘 𝑠  𝑑𝑠 

Integration is linear so you can re-arange the terms and solve for zero getting: 

 𝑐𝑖  𝑉𝑖 𝑠 𝑉𝑘 𝑠 𝑑𝑠

𝑖

=  𝑓 𝑠 𝑉𝑘 𝑠 𝑑𝑠 



The left hand side gives you a row of a matrix A, where 𝐴𝑖𝑗 =  𝑉𝑖 𝑠 𝑉𝑗  𝑠 𝑑𝑠 and the right hand 

side will give you a vector (integrals of function times this basis function.)  This leads to a linear 

system: 𝐴𝑐 = 𝑏 the inverse of A is: 

 

To project a function represented using this basis into SH you just integrate the V’s against the 

SH basis, for quadratic spherical harmonics that results in the following matrix: 

 

The even degrees above quadratic are in the null-space of the Ambient Cube basis, and the odd 

degrees above quadratic are in the null space of the clamped cosine function, so if irradiance 

environment maps are being used, no higher order is necessary.  The Ambient Cube basis can 

exactly reconstruct the DC term, approximate the linear term, exactly reconstructs two of the 

quadratic basis functions (𝑦2
0 , 𝑦2

2) and has three of the quadratic basis functions in the null space 

(𝑦2
−2, 𝑦2

−1, 𝑦2
1).   
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To project from SH into the Ambient Cube basis you need to minimize this error function: 

  

𝐸 𝑐 =    𝑐𝑖𝑉𝑖 𝑠 

𝑖

− 𝑙𝑗𝑦𝑗  𝑠 

𝑗

 

2

𝑑𝑠 

Where 𝑙𝑗are the SH lighting coefficients (assumed to be convolved.)  Once again differentiate 

with respect to the unkown variables: 

𝑑𝐸

𝑑𝑐𝑘
= 2   𝑐𝑖𝑉𝑖 𝑠 

𝑖

− 𝑙𝑗𝑦𝑗  𝑠 

𝑗

 𝑉𝑘 𝑠  𝑑𝑠 

And then solve for zero: 

 𝑐𝑖  𝑉𝑖 𝑠 𝑉𝑘 𝑠 𝑑𝑠

𝑖

=  𝑙𝑗  𝑦𝑗  𝑠 𝑉𝑘 𝑠 𝑑𝑠

𝑗

 

This results in a linear system as well, 𝐴𝑐 = 𝐵𝑙 , where A is the same as before B is a matrix 

where 𝐵𝑖𝑗 =  𝑉𝑖 𝑠 𝑦𝑗  𝑠 𝑑𝑠.  The matrix 𝐴−1𝐵 can be used to move from SH to the Ambient 

Cube basis: 

 

Appendix A9 Shader/CPU code for Irradiance Environment Maps 
Given a quadratic SH representation of a lighting environment, it is fairly simple to generate 

shader code.  In [35] a matrix representation is used, however this turns out to require more 

instructions17 (15 vs. 11) and more constants (12 vs. 7) compared to a more direct evaluation of 

                                                           
17

 On scalar GPU’s this gap is even more significant – 60 vs. 42 
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the quadratic spherical harmonics.  You fold leading constants of the polynomials into the 

lighting coefficients, group all but 𝑦2
−2 by channel (using float4’s) and keep 𝑦2

−2 as a color and 

fold part of 𝑦2
0 into DC.  Shader code for evaluation and CPU code to setup the constants is 

shown below.  The normal passed in to shader code should be normalized and the 4th channel 

should be 1.0.  The CPU code takes an array of 3 float pointers to quadratic radiance SH 

coefficients and an Effect to bind the constants to. 

// constants containing irradiance environmne map 

float4 cAr; 

float4 cAg; 

float4 cAb; 

float4 cBr; 

float4 cBg; 

float4 cBb; 

float4 cC; 

 

float3 ShadeIrad(float4 vNormal)   

{   

  float3 x1, x2, x3; 

     

       // Linear + constant polynomial terms 

       x1.r = dot(cAr,vNormal); 

       x1.g = dot(cAg,vNormal); 

       x1.b = dot(cAb,vNormal); 

     

       // 4 of the quadratic polynomials 

       float4 vB = vNormal.xyzz * vNormal.yzzx;    

       x2.r = dot(cBr,vB); 

       x2.g = dot(cBg,vB); 

       x2.b = dot(cBb,vB); 

    

       // Final quadratic polynomial 

       float vC = vNormal.x*vNormal.x - vNormal.y*vNormal.y; 

       x3 = cC.rgb * vC;  

   return x1+x2+x3;    

} 

 

//----------------------------------------------------------- 

void SetSHEMapConstants( float* fLight[3], ID3DXEffect* pEffect) 

{  

    // Lighting environment coefficients 

    D3DXVECTOR4 vCoeff[3]; 

 

    static const float s_fSqrtPI = ((float)sqrtf(D3DX_PI)); 

    const float fC0 = 1.0f/(2.0f*s_fSqrtPI); 

    const float fC1 = (float)sqrt(3.0f)/(3.0f*s_fSqrtPI); 

    const float fC2 = (float)sqrt(15.0f)/(8.0f*s_fSqrtPI); 

    const float fC3 = (float)sqrt(5.0f)/(16.0f*s_fSqrtPI); 

    const float fC4 = 0.5f*fC2; 

 

    int iC; 

    for( iC=0; iC<3; iC++ ) 

    { 

        vCoeff[iC].x = -fC1*fLight[iC][3]; 

        vCoeff[iC].y = -fC1*fLight[iC][1]; 



        vCoeff[iC].z =  fC1*fLight[iC][2]; 

        vCoeff[iC].w =  fC0*fLight[iC][0] - fC3*fLight[iC][6]; 

    } 

 

    pEffect->SetVector( "cAr", &vCoeff[0] ); 

    pEffect->SetVector( "cAg", &vCoeff[1] ); 

    pEffect->SetVector( "cAb", &vCoeff[2] ); 

 

    for( iC=0; iC<3; iC++ ) 

    { 

        vCoeff[iC].x =      fC2*fLight[iC][4]; 

        vCoeff[iC].y =     -fC2*fLight[iC][5]; 

        vCoeff[iC].z = 3.0f*fC3*fLight[iC][6]; 

        vCoeff[iC].w =     -fC2*fLight[iC][7]; 

    } 

 

    pEffect->SetVector( "cBr", &vCoeff[0] ); 

    pEffect->SetVector( "cBg", &vCoeff[1] ); 

    pEffect->SetVector( "cBb", &vCoeff[2] ); 

 

    vCoeff[0].x = fC4*fLight[0][8]; 

    vCoeff[0].y = fC4*fLight[1][8]; 

    vCoeff[0].z = fC4*fLight[2][8]; 

    vCoeff[0].w = 1.0f; 

 

    pEffect->SetVector( "cC", &vCoeff[0] ); 

} 
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