

1

Supplement for
Real-Time Soft Shadows in Dynamic Scenes

using Spherical Harmonic Exponentiation

Zhong Ren1* Rui Wang1* John Snyder2 Kun Zhou3 Xinguo Liu3
Bo Sun4† Peter-Pike Sloan5 Hujun Bao1 Qunsheng Peng1 Baining Guo3

1 Zhejiang Univ. 2 Microsoft Research 3 Microsoft Research Asia 4 Columbia Univ. 5 Microsoft Corporation

This document contains supplemental material for our Siggraph submission, including more details about the run-
time shading implementation and more extensive results.

1 Run-Time Shading Implementation on the GPU
Given the blocker spheres at a vertex, we accumulate the blocker visibility log vectors f[i] to yield the total log visi-
bility vector f, and then perform SH exponentiation to transform the log vector back to a product space visibility
vector, g = exp*(f). The result is then used in the (H(N)*L)·g shading computation. To save an SH product, we pre-
compute LH(N)=H(N)*L, stored as a cube map, and do a cube map lookup using the normal vector N as the index.

To map this computation to the GPU, we have two basic choices:

1. Per-pixel shading. A list of spherical blockers, parameterized by their center and radius, are packed into tex-
tures to be passed into a pixel shader. Per-pixel shading provides a high-quality result, but is too expensive for
real-time shading. In one experiment using a 3.2GHz PC with 1GB memory and an Nvidia 6800GT graphics
card, only 7~8 Hz was achieved for a small scene consisting of 32 blockers, rendered in a moderately-sized
window of 600×600.

2. Per-vertex shading. Many tables are involved in the shading computation, including lists of spherical blockers,
circle blocker log coefficients, fl(θ), and a and b coefficients used in the optimal linear (OL and HYB) exponen-
tiation method. The NVidia GeForce6 series graphics cards support texture fetching in the vertex shader, so
this is feasible. However, the operation is much slower than in the pixel shader, and provides an unsatisfactory
performance gain over the CPU implementation.

We instead use a more complicated approach based on the OGL pixel-buffer-object (PBO) and vertex buffer object
(VBO) extensions. The idea is to perform per-vertex shading but computed using the pixel engine. Because the
NVidia 6800/7800 has 16 fragment processors, compared with 6 vertex processors, and also because texture fetch-
ing in the pixel shader is much more efficient than in the vertex shader, this approach gives us more than a 10× per-
formance gain over the CPU implementation.

In a preprocessor, the log visibility coefficients fl(θ) and a,b tables of the OL method are prepared and passed into
the shader. To handle local light sources, another 2D table of zonal harmonic (ZH) coefficients, LH(θ,φ), is also

* This work was done while Zhong Ren and Rui Wang were interns at Microsoft Research Asia
† This work was done while Bo Sun was an intern at Microsoft Research

First Pass

CPU

Second Pass
GPU

Preprocess

Final Pass

circle log coefs fl(θ); a,b tables;
H*L as cube maps

positions; normals;
cluster info; sphere info

vertex colors

vertex positions; indexed triangle list

GPU

CPU

rendered result

2

prepared. At runtime, the first pass prepares vertex info (position, normal, and receiver cluster id) and sphere info
(center and radius of the blocker spheres from the “cut” of the sphere tree hierarchy based on the bounding sphere of
the receiver cluster, as well as the weight vector w[i] for each of these blocker spheres) on the CPU and passes them
into the shader. In the second pass, a quad is rendered with the pixel shader on. Each pixel in the frame buffer cor-
responds to a vertex to be shaded. The result is then dumped from the frame buffer to the vertex buffer and used as
a color array. The final pass simply invokes glDrawElements to draw all the triangles in the scene to be shaded. In
summary, the first pass generates vertex and blocker information on the CPU, the second pass does the shading on
the GPU, and the final pass renders the resulting shaded vertices to the screen, also on the GPU.

The second pass reads from a texture called the vertex info map which stores the position, normal and receiver clus-
ter id for an array of pixels, each representing a vertex. Since each vertex in the same cluster shares the same sphere
tree cut, the shader uses the cluster id to locate the corresponding row in the sphere info map, where the center, ra-
dius and weights of each sphere in the cluster’s blocker cut are stored. In a “while” loop, each sphere i in the row,
representing the cut list, is processed via equation (38) in the paper and the log visibility vector is accumulated. Dy-
namic branching is used here to avoid self shadow problems, following the rules in Section 6.2 of the paper. After
accumulating all the blockers in the cut list, the shader evaluates the hybrid (HYB) algorithm, which combines the
optimal linear evaluation with DC isolation and scaling/squaring to perform the SH exponential, yielding the visibil-
ity vector. A dot product with the pre-computed LH(N) then yields the color for the pixel (really, the vertex).

To indicate when the while loop above should terminate, we store a “terminator sphere” at the end of sphere list
having a radius of 0. The size of the sphere info map texture specifies the maximum number of blocker spheres we
can store in any cut list. We use space for 128 or 256 blocker spheres in our examples.

The PBO/VBO extensions of OGL are nothing more than a video memory management API, and are used in combi-
nation to eliminate a read-back from video memory to host memory between the second and final pass. The result
of the second pass is transferred from the frame buffer to a PBO via a glReadPixels call. This performs a video-
memory to video-memory copy which can be done very fast, over 300Hz for a 512×512 RGBA frame buffer. The
PBO then becomes a VBO to make the shaded colors available as vertex information.

To be more precise, we use the following code sequence:
#define BUFFER_OFFSET(i) ((char*)NULL + (i))

glGenBuffersARB(1, &H);
// perform second pass
...
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, H); // bind H as target of glReadPixels
glReadPixels(0, 0, nRes, nRes, GL_RGB, GL_FLOAT, BUFFER_OFFSET(0));

// perform final pass
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glVertexPointer(…);
glBindBufferARB(GL_ARRAY_BUFFER, H); // bind H as vertex source

Position

Normal

Cluster IDs

VertexInfoMap

Center &
Radius

Weights

SphereInfoMap

3

glColorPointer(…, BUFFER_OFFSET(0)); // use H as vertex color source

glDrawElements(…);

glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);

...

2 More Results
Log Comparison(Single Circular Blocker)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2

Alpha

R
el

at
iv

e
L^

2
Er

ro
r

Inverse Exponential
Numerical Intergration

Log Comparison(Bunny)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2

Alpha

R
el

at
iv

e
L^

2
E

rr
or

Inverse Exponential
Numerical Integration

(a) single spherical blocker (b) bunny blocker

Figure 1: SH Log method quantitative comparison. We plot relative RMS error for two examples: (a) a single spheri-
cal blocker, and (b) the bunny blocker with nS=63 overlapping spheres, as a function of the angle subtended at the
receiver point in radians. The numerical integration method uses equation (25) in the paper, with a threshold ε=0.02.
The inverse exponential method uses equation (30), with the same threshold of ε=0.02. Both methods use PS*-9 to
evaluate SH exponential and only differ in their method of computing log when constructing the table of circular
blockers. Error is defined using an L2 norm based on difference with product space rendering. The plots show the
inverse exponential technique reduces error significantly.

 (a) product space (b) log=inverse exp (c) log=numerical integration

Figure 2: SH Log method visual comparison. (a) is accumulated in product space and forms the “ground truth” render-
ing. (b) and (c) both use log space accumulation, but with different methods for computing SH log (see previous fig-
ure). Computing log using numerical integration with clipping yields a more error, in the form of blur, compared to
the inverse exponential method. Note the darkest part of the shadow directly underneath the bunny.

4

n=3 n=4 n=5 n=6

SH product space

1.9x 3.4x 6.5x 11.0x

SH log space (using PS*-2 for exponentiation)

Figure 3: SH order comparison, product space vs. log space. The lighting applied is as close to a delta function as allowed by the
SH projection at each order n. No windowing is applied. The factors below the log space images are the total rendering speedup
observed in a CPU implementation when accumulating blockers in log space rather than product space and using PS*-2 for expo-
nentiation. Approximation error from doing the computation in log space is very difficult to see at any of these SH orders. Higher-
order SH vectors allow “peakier” lights and sharper shadows, and also increase the acceleration obtained using log space instead of
product space.

5

Figure 5: GPU-rendered examples zoomed up.

(a) no shadows (b) shadows, showing blocker approx (c) shadows, drawing meshes

Figure 4: GPU-rendered examples. SH exponential is evaluated using HYB. SH order is n=4.

6

Figure 6: Self-shadowing examples, rendered on the GPU. Note the shadow under the wizard’s beard and arms, and from
his gown onto his feet. The troll’s arm casts a shadow onto his body and his head onto his neck.

7

O
L

(G
PU

)
R

M
S

(L
2

N
or

m
) =

 0
.0

17
13

5
R

M
S

(S
ha

de
d)

 =
 0

.0
24

13
28

#S
H

 sq
ua

re
s:

 0
#S

H
 p

ro
du

ct
s:

 0
@

 9
0.

35
 H

z

PS
-2

R
M

S
(L

2
N

or
m

) =
 0

.0
85

40
8

R
M

S
(S

ha
de

d)
 =

 0
.2

22
01

0
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 0

@
 8

.1
1

H
z

PS
-3

R
M

S
(L

2
N

or
m

) =
 0

.0
95

09
2

R
M

S
(S

ha
de

d)
 =

 0
.3

71
02

6
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 1

6,
38

4
@

 7
.6

4
H

z

PS
-4

R
M

S
(L

2
N

or
m

) =
 0

.1
44

24
9

R
M

S
(S

ha
de

d)
 =

 0
.7

50
86

8
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 4

9,
15

2
@

5.
70

 H
z

PS
-2

1
R

M
S

(L
2

N
or

m
) =

 0
.0

05
51

60
R

M
S

(S
ha

de
d)

 =
 0

.0
04

69
10

#S
H

 sq
ua

re
s:

 0
#S

H
 p

ro
du

ct
s:

 3
27

,6
80

@
 3

.2
7

H
z

PS
-3

0
R

M
S

(L
2

N
or

m
) =

 0
.0

02
12

1
R

M
S

(S
ha

de
d)

 =
 0

.0
09

65
3

#S
H

 sq
ua

re
s:

 0
#S

H
 p

ro
du

ct
s:

 4
58

,7
52

@
 2

.6
1

H
z

PS
*-

2
R

M
S

(L
2

N
or

m
) =

 0
.0

10
09

R
M

S
(S

ha
de

d)
 =

 0
.0

02
87

5
#S

H
 sq

ua
re

s:
 4

5,
51

8
#S

H
 p

ro
du

ct
s:

 0
@

 7
.5

3
H

z

PS
*-

9
R

M
S

(L
2

N
or

m
) =

 0
.0

09
12

2
R

M
S

(S
ha

de
d)

 =
 0

.0
02

74
0

#S
H

 sq
ua

re
s:

 5
4,

02
2

#S
H

 p
ro

du
ct

s:
 3

2,
76

8
@

 3
.9

8
H

z

H
Y

B
 (G

PU
)

R
M

S
(L

2
N

or
m

) =
 0

.0
09

13
3

R
M

S
(S

ha
de

d)
 =

 0
.0

02
79

5
#S

H
 sq

ua
re

s:
 3

0,
78

4
#S

H
 p

ro
du

ct
s:

 0
@

 8
2.

60
 H

z

TR
IP

R
M

S
(L

2
N

or
m

) =
 0

.0
00

00
R

M
S

(S
ha

de
d)

 =
 0

.0
00

00
0

#S
H

 sq
ua

re
s:

 0
#S

H
 p

ro
du

ct
s:

 4
94

,7
90

@
 2

.4
7

H
z

N
or

m
m

ax

16
.5

0
#S

ph
er

es
 6

3
Re

ce
iv

er
 P

la
ne

12
8X

12
8

En
v

 K
itc

he
n

8

N
or

m
m

ax

12
.7

6
#S

ph
er

es

63
Re

ce
iv

er
 P

la
ne

12
8X

12
8

En
v

 B
ea

ch

TR
IP

R
M

S
(L

2
N

or
m

) =
 0

.0
00

00
R

M
S

(S
ha

de
d)

 =
 0

.0
00

00
0

#S
H

 sq
ua

re
s:

 0
#S

H
 p

ro
du

ct
s:

 5
70

,9
62

@
 2

.1
4

H
z

PS
*-

9
R

M
S

(L
2

N
or

m
) =

 0
.0

03
26

1
R

M
S

(S
ha

de
d)

 =
 0

.0
04

35
4

#S
H

 sq
ua

re
s:

 5
1,

94
0

#S
H

 p
ro

du
ct

s:
 3

2,
76

8
@

 3
.7

8
H

z

PS
*-

2
R

M
S

(L
2

N
or

m
) =

 0
.0

04
13

6
R

M
S

(S
ha

de
d)

 =
 0

.0
04

43
6

#S
H

 sq
ua

re
s:

 2
8,

25
7

#S
H

 p
ro

du
ct

s:
 0

@
 6

.8
5

H
z

H
Y

B
 (G

PU
)

R
M

S
(L

2
N

or
m

) =
 0

.0
04

03
5

R
M

S
(S

ha
de

d)
 =

 0
.0

04
44

6
#S

H
 sq

ua
re

s:
 1

8,
84

9
#S

H
 p

ro
du

ct
s:

 0
@

 8
5.

01
 H

z

O
L

(G
PU

)
R

M
S

(L
2

N
or

m
) =

 0
.0

11
59

5
R

M
S

(S
ha

de
d)

 =
 0

.0
12

56
0

#S
H

 sq
ua

re
s:

 0
#S

H
 p

ro
du

ct
s:

 0
@

 9
2.

30
 H

z

PS
-2

R
M

S
(L

2
N

or
m

) =
 0

.0
49

70
8

R
M

S
(S

ha
de

d)
 =

 0
.1

47
13

8
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 0

@
 7

.8
8

H
z

PS
-3

R
M

S
(L

2
N

or
m

) =
 0

.0
40

65
7

R
M

S
(S

ha
de

d)
 =

 0
.1

62
91

1
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 1

6,
35

4
@

 6
.5

7
H

z

PS
-4

R
M

S
(L

2
N

or
m

) =
 0

.0
38

43
9

R
M

S
(S

ha
de

d)
 =

 0
.2

28
31

3
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 3

2,
76

8
@

 5
.8

8
H

z

PS
-5

R
M

S
(L

2
N

or
m

) =
 0

.0
34

55
9

R
M

S
(S

ha
de

d)
 =

 0
.2

41
00

2
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 4

9,
15

2
@

 5
.0

1
H

z

PS
-1

7
R

M
S

(L
2

N
or

m
) =

 0
.0

02
92

33
R

M
S

(S
ha

de
d)

 =
 0

.0
05

83
76

2
#S

H
 sq

ua
re

s:
 0

#S
H

 p
ro

du
ct

s:
 2

45
,7

60
@

 3
.0

5
H

z

9

