01204211: Exercises 8-2

Notes: To avoid confusion, in your answer, you can write vectors with this notation \vec{u}.
5. Span test 3. Consider 3 -vectors over \mathbb{R}. Let $\boldsymbol{u}_{1}=[1,2,3], \boldsymbol{u}_{2}=[1,1,1], \boldsymbol{u}_{3}=[1,2,2]$. We would like to show that $\boldsymbol{v}=[10,13,29] \in \operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$. However, in this case, it does not look very easy. Let us define variables $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $\boldsymbol{v}=\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}+\alpha_{3} \boldsymbol{u}_{3}$. Write a system of linear equations for solving for these α_{i} 's.
6. Gaussian Elimination. You can solve for $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in the previous questions using Gaussian Elimination, that you learn from high school. Look up on the Internet to refresh your memory.
Look up the on-line solver and use it to find the required α_{i} 's. Write the solution down here (along with the reference to the website that you use):
7. Unsolvable cases. As in the previous questions, consider vectors in \mathbb{R}^{3}. In this question, your task is, however, to come up with examples where you cannot solve the span test problem.
Define $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3} \in \mathbb{R}^{3}$, and $\boldsymbol{v} \in \mathbb{R}^{3}$ such that $\boldsymbol{v} \notin \operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$. Explain briefly why it is the case.
8. Infinite solution cases. As in the previous questions, consider vectors in \mathbb{R}^{3}. In this question, your task is, however, to come up with examples where there are many combinations of α_{i} 's, i.e., the representation is not unique.
Define $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3} \in \mathbb{R}^{3}$, and $\boldsymbol{v} \in \mathbb{R}^{3}$ such that $\boldsymbol{v} \in \operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ and there are many ways to write \boldsymbol{v} as a linear combination of $\boldsymbol{u}_{1}, \boldsymbol{u}_{1}, \boldsymbol{u}_{3}$.
Explain briefly why it is the case.

