

Iterative and Incremental
development

01219116/01219117
Programming 2

Spring Semester 2018

Traditional Waterfall Model

Analysis

Design

Implementation

Testing

Maintenance

Requirements

Architecture

Code

Problems (1)

● Very hard to get all requirement up-front

Problems (2)

● Requirement changes
– Changes in business condition
– Knowledge gained from the

development/deployment

Problems (3)

● Quality problem
– Testing at the end might not be sufficient
– Before testing begins, the team has no clear idea

how the project progresses.

Big-bang integration

● This is a classic recipe to failure.
● Work on many (large) parts of the project and

wait to combine them at the end (and hope that
it will work).

Software Development as a Journey

● You have (unclear) goals, with limited resource.

Software Development as a Journey

● You have (unclear) goals, with limited resource.

We think we are here!
No. We are here.

Early feedback

feedback

Software Development as a Journey

● Early feedback

We are here.
We are here.

We are here. We are here.

This picture is too "Water-fall". Software
development rarely has clear, defined goals.

Software Development as a Journey
(Agile view)

● Early feedback

We are here.

Updated goal

We are here.

The feedback loop: lean startup

BUILD

MEASURELEARN

The feedback loop: lean startup

BUILD MEASURE LEARN BUILD MEASURE LEARN BUILD MEASURE LEARN

● Continuous building and learning loop

How can you get feedback?

● Are we building the right product?
● Talk with the customer:

– Developer: This is my piece of code (500 lines)
that still doesn’t do anything much. Can you give
us feedback?

– Customer: ???
● You need to be able to show a concrete unit of

work to the customer.

How can you get feedback?

● Are we building the product right?
● Software Quality (given that the requirement is

known and is clear)
● Use various testing activities

– unit testing
– automated functional testing
– manual testing

Build

● What to build?
● When to build?
● How to build?

What to build?

● Small

→ doesn’t take too much time to build
● Measurable

→ should be able to obtain feedback after we build
● Goal-based

→ should provide us with the right kind of feedback

Many kinds of feedback

● Functionality
– Does our product solve the user’s problems?
– Does it produce correct answers?

● Usability
– Is it easy to use?
– Does it look nice? Is it beautiful?

● Efficiency
– Can the product support 100 concurrent users?

● Security, Compatibility, etc

Different feedback needed
at different time

Incremental development

● To build the whole thing, we work by building its
parts, one by one.

Iterative development

● We repeatedly build something in rounds.
● We know that we will not get it right the first

time, but we keep working on it many times.

Tasks, tasks, tasks

● Breakdown the whole project into a set of tasks
● Think about incremental development

→ what are the parts that you need to build?
● Think about iterative development

→ for each part, what are the smaller steps we can
take to complete it?

Complete?

● The goal is not to have a complete task
breakdown.
– (That’s nearly impossible, and usually leads to a

waste of time and effort.)
● But to have enough product idea to start

building.
● The task list will be refined over time.

Prioritization

● Too many tasks to do, which one to build first?
● Work on the one with the highest "return".

– What are the possible "returns"?

Practice

● Return to your group from last week.
● Think about the game that you have chosen.
● Breakdown the tasks you need to do if you want

to build that game.
– Don’t try to get all the details in the first round.

Example: Prince of Persia
(Round 1)

● Show map
● Show main character
● Move the main character according to the

keyboard input
● Animate the main character movement

Example: Prince of Persia
(Round 2)

● Show map
– Show map with just one row
– Show map with many rows with free space for

climbing (without the traps)
– Show map with many rows with free space for

falling (without the traps)
– Show map with moving cutters
– Show map with moving spikes

Example: Price of Persia
(Round 2)

● Move the character
– Move the character in a simple row
– Let the character climb the steps
– Let the character fall if it move to a free space
– Move the character through moving cutters
– Move the character through moving cutters and get

killed

Practice

● From the tasks that you have listed, prioritize
them.

● We will have discussions after you finish.

When to build?

● You want to iterate over
this loop quickly.

● There are many ways to
force you to get moving
in this loop.

● Simplest one is to use
fixed time-boxing.

BUILD

MEASURELEARN

Fixed time-boxing

● Work in a fixed time frame, e.g. one to four
week periods.
– In Scrum, this is called a sprint.

● In that period, build something and get
feedback.

B M L B M LB M L B M L

Time

How to build?

● We need engineering practices that "support"
incremental and iterative development.

● How to make sure that _____________ over a
long period of time.
– We remember what we did
– The features that already work remain working
– The feature can be added
– The code can be modified, fixed, changed
– The code is understandable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

