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Traditional Waterfall Model

Analysis

Design

Implementation

Testing

Maintenance

Requirements

Architecture

Code



  

Problems (1)

● Very hard to get all requirement up-front



  

Problems (2)

● Requirement changes
– Changes in business condition 
– Knowledge gained from the 

development/deployment



  

Problems (3)

● Quality problem
– Testing at the end might not be sufficient
– Before testing begins, the team has no clear idea 

how the project progresses.



  

Big-bang integration

● This is a classic recipe to failure.
● Work on many (large) parts of the project and 

wait to combine them at the end (and hope that 
it will work).



  

Software Development as a Journey

● You have (unclear) goals, with limited resource.



  

Software Development as a Journey

● You have (unclear) goals, with limited resource.

We think we are here!
No. We are here.



  

Early feedback

feedback



  

Software Development as a Journey

● Early feedback

We are here.
We are here.

We are here. We are here.

This picture is too "Water-fall".  Software 
development rarely has clear, defined goals.



  

Software Development as a Journey 
(Agile view)

● Early feedback

We are here.

Updated goal

We are here.



  

The feedback loop: lean startup

BUILD

MEASURELEARN



  

The feedback loop: lean startup

BUILD MEASURE LEARN BUILD MEASURE LEARN BUILD MEASURE LEARN

● Continuous building and learning loop



  

How can you get feedback?

● Are we building the right product?
● Talk with the customer:

– Developer:  This is my piece of code (500 lines) 
that still doesn’t do anything much.  Can you give 
us feedback?

– Customer:  ???
● You need to be able to show a concrete unit of 

work to the customer.



  

How can you get feedback?

● Are we building the product right?
● Software Quality (given that the requirement is 

known and is clear)
● Use various testing activities

– unit testing
– automated functional testing
– manual testing



  

Build

● What to build?
● When to build?
● How to build?



  

What to build?

● Small 

→ doesn’t take too much time to build
● Measurable 

→ should be able to obtain feedback after we build
● Goal-based 

→ should provide us with the right kind of feedback



  

Many kinds of feedback

● Functionality
– Does our product solve the user’s problems?
– Does it produce correct answers?

● Usability
– Is it easy to use?
– Does it look nice?  Is it beautiful?

● Efficiency
– Can the product support 100 concurrent users?

● Security, Compatibility, etc



  

Different feedback needed 
at different time



  

Incremental development

● To build the whole thing, we work by building its 
parts, one by one.



  

Iterative development

● We repeatedly build something in rounds.  
● We know that we will not get it right the first 

time, but we keep working on it many times.



  

Tasks, tasks, tasks

● Breakdown the whole project into a set of tasks
● Think about incremental development

→ what are the parts that you need to build?
● Think about iterative development

→ for each part, what are the smaller steps we can 
take to complete it?



  

Complete?

● The goal is not to have a complete task 
breakdown.
– (That’s nearly impossible, and usually leads to a 

waste of time and effort.)
● But to have enough product idea to start 

building.
● The task list will be refined over time.



  

Prioritization

● Too many tasks to do, which one to build first?
● Work on the one with the highest "return".

– What are the possible "returns"?



  

Practice

● Return to your group from last week.
● Think about the game that you have chosen.
● Breakdown the tasks you need to do if you want 

to build that game.
– Don’t try to get all the details in the first round.



  

Example: Prince of Persia
(Round 1)

● Show map
● Show main character
● Move the main character according to the 

keyboard input
● Animate the main character movement



  

Example: Prince of Persia
(Round 2)

● Show map
– Show map with just one row
– Show map with many rows with free space for 

climbing (without the traps)
– Show map with many rows with free space for 

falling (without the traps)
– Show map with moving cutters
– Show map with moving spikes



  

Example: Price of Persia
(Round 2)

● Move the character
– Move the character in a simple row
– Let the character climb the steps
– Let the character fall if it move to a free space
– Move the character through moving cutters
– Move the character through moving cutters and get 

killed



  

Practice

● From the tasks that you have listed, prioritize 
them.

● We will have discussions after you finish.



  

When to build?

● You want to iterate over 
this loop quickly.

● There are many ways to 
force you to get moving 
in this loop.

● Simplest one is to use 
fixed time-boxing.

BUILD

MEASURELEARN



  

Fixed time-boxing

● Work in a fixed time frame, e.g. one to four 
week periods.
– In Scrum, this is called a sprint.

● In that period, build something and get 
feedback.

B M L B M LB M L B M L

Time



  

How to build?

● We need engineering practices that "support" 
incremental and iterative development.

● How to make sure that _____________ over a 
long period of time.
– We remember what we did
– The features that already work remain working
– The feature can be added
– The code can be modified, fixed, changed
– The code is understandable
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