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Common structure of a test case

* How do you test a function?

— You need to call it,
— and check if it works correctly,
- by looking at its return value.

 Your code would contain:

some initialization code

Call the function

check the results

The checking
code is usually
written as a set
of assertions.



Our test code in Flappy Dot

mmn

>>> check player pillar collision(100, 100, 300, 200)
False

>>> check player pillar collision(300, 300, 300, 200)
True

mnr

v

result = check player pillar collision(100, 100, 300, 200)

assert(result, False)

he checking code is usually written as a set of
assertions.



Testing Tools

e Test framework: doctest

— Write test cases in Python docstring.



The first (finished) example

def max3(a, b, c):

>>> max3(10, 5, 2)

10

>>> max3(2, 15, 5)

15

>>> max3(10, 7, 20)

20

>>> max3(20, 7, 20)

20

>>> max3(100, 100, 20)
100

>>> max3(100, 200, 200)
200

if a >= b and a >= c:
return a

if b >=a and b >= c:
return b

if ¢ >= a and ¢ >= b:
return c

*spaces between lines are removed so that the code fit in one page.



What do you see?

* A code with corresponding test cases.

* Enough test cases to make you feel confident
about the correctness of the code.

- Ask yourself: hide the code and look at only the
test, does it make you feel comfortable to use the
code?

* Enough test examples to explain what the
function does.



How can we get there?

* Traditional approach

- Write code, then write test.

* Test-driven development

- Write test, then write code.



A few words before we start

 TDD is a well-established practice in software
development in general.

* But in Game development, TDD (or even unit
testing) is not a standard practice.



1%t example: max3

* Let's try to work with max3 to get to the final
code as shown previously.

def max3(a, b, c):
#* ...

* This function returns the maximum of a, b, and
C.



How to get started

* If you are fluent with the techniques, you can
just start writing test cases right away.

* But sometimes it might be easier to start by
thinking about what you would like to test.

* |n other words, let ask:

- how do we know that max3 works correctly?



What's in this box?

IS It a star-shaped object?



Let's try to “peak” into the box
with a pin

These are
the positions
that we plan
to use a pin
to check If
there is
anything at
that position

IS It a star-shaped object?



Expectations:
If there Is a star in the box

0 = nothing
X = something

IS It a star-shaped object?



Actual results

0 = nothing
X = something

Do you believe that it is a star-shaped object?



Actual results with more tests

0 = nothing
X = something

Do you believe that it is a star-shaped object?



Usage examples

* Think about the test cases as usage examples
for the function.

expected

a b C
results



Try to be lazy

* Many usage examples look at the same
situation.

e We don't need to include all of them.

expected
a b C
results
10 20 5 20
50 700 12 700
13 15 12 15
1 2 3 3
9 30 40 40
10 10 5 10



Pick one to start

* WWe need to get started.
* Pick one example, and let's code.

- Which one? Let's try the one that is easiest to

code.
X
a . c expected
results
10 20 5 20
1 2 3 3

10 10 5 10



See the demo



Test structure



Let's try

* Let's start with a simple function:

def add with cap(a, b, cap):
# ...

* This function adds a and b, but ensure that the
return value is not greater than cap. (Think
about the HP in game after you drink a magic
recovery portion.)



Examples

» Before you start writing the test and code, think about the
examples that you would need to show that
add with cap works correctly.

 Think about a table like the one below.

» After you have listed a few test cases, think about which
one to start testing first.

expected

d b cap results



Practice time



Function get top k

* Write function get_top k that takes a list of
integers and returns the k-th largest integer.

def get top k(lst, k):
# ...

* For example:
- get top k([1, 2, 3, 4], 3) shouldreturn 2

- get top k([16, 9, 8, 100], 2) should return
10



Function pronounce

* Write function pronounce that takes an integer
X from 1 to 999 and return how X is pronounced
iIn English.

def pronounce(Xx):
#o...

* For example:

— pronounce(1) should return 'one'
— pronounce(57) should return 'fifty-seven'’
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