Unit testing in Python
with doctest (1)

01219116/01219117
Programming 2

Common structure of a test case

* How do you test a function?

— You need to call it,
— and check if it works correctly,
- by looking at its return value.

 Your code would contain:

some initialization code

Call the function

check the results

The checking
code is usually
written as a set
of assertions.

Our test code in Flappy Dot

mmn

>>> check player pillar collision(100, 100, 300, 200)
False

>>> check player pillar collision(300, 300, 300, 200)
True

mnr

v

result = check player pillar collision(100, 100, 300, 200)

assert(result, False)

he checking code is usually written as a set of
assertions.

Testing Tools

e Test framework: doctest

— Write test cases in Python docstring.

The first (finished) example

def max3(a, b, c):

>>> max3(10, 5, 2)

10

>>> max3(2, 15, 5)

15

>>> max3(10, 7, 20)

20

>>> max3(20, 7, 20)

20

>>> max3(100, 100, 20)
100

>>> max3(100, 200, 200)
200

if a >= b and a >= c:
return a

if b >=a and b >= c:
return b

if ¢ >= a and ¢ >= b:
return c

*spaces between lines are removed so that the code fit in one page.

What do you see?

* A code with corresponding test cases.

* Enough test cases to make you feel confident
about the correctness of the code.

- Ask yourself: hide the code and look at only the
test, does it make you feel comfortable to use the
code?

* Enough test examples to explain what the
function does.

How can we get there?

* Traditional approach

- Write code, then write test.

* Test-driven development

- Write test, then write code.

A few words before we start

 TDD is a well-established practice in software
development in general.

* But in Game development, TDD (or even unit
testing) is not a standard practice.

1%t example: max3

* Let's try to work with max3 to get to the final
code as shown previously.

def max3(a, b, c):
#* ...

* This function returns the maximum of a, b, and
C.

How to get started

* If you are fluent with the techniques, you can
just start writing test cases right away.

* But sometimes it might be easier to start by
thinking about what you would like to test.

* |n other words, let ask:

- how do we know that max3 works correctly?

What's in this box?

IS It a star-shaped object?

Let's try to “peak” into the box
with a pin

These are
the positions
that we plan
to use a pin
to check If
there is
anything at
that position

IS It a star-shaped object?

Expectations:
If there Is a star in the box

0 = nothing
X = something

IS It a star-shaped object?

Actual results

0 = nothing
X = something

Do you believe that it is a star-shaped object?

Actual results with more tests

0 = nothing
X = something

Do you believe that it is a star-shaped object?

Usage examples

* Think about the test cases as usage examples
for the function.

expected

a b C
results

Try to be lazy

* Many usage examples look at the same
situation.

e We don't need to include all of them.

expected
a b C
results
10 20 5 20
50 700 12 700
13 15 12 15
1 2 3 3
9 30 40 40
10 10 5 10

Pick one to start

* WWe need to get started.
* Pick one example, and let's code.

- Which one? Let's try the one that is easiest to

code.
X
a . c expected
results
10 20 5 20
1 2 3 3

10 10 5 10

See the demo

Test structure

Let's try

* Let's start with a simple function:

def add with cap(a, b, cap):
...

* This function adds a and b, but ensure that the
return value is not greater than cap. (Think
about the HP in game after you drink a magic
recovery portion.)

Examples

» Before you start writing the test and code, think about the
examples that you would need to show that
add with cap works correctly.

 Think about a table like the one below.

» After you have listed a few test cases, think about which
one to start testing first.

expected

d b cap results

Practice time

Function get top k

* Write function get_top k that takes a list of
integers and returns the k-th largest integer.

def get top k(lst, k):
...

* For example:
- get top k([1, 2, 3, 4], 3) shouldreturn 2

- get top k([16, 9, 8, 100], 2) should return
10

Function pronounce

* Write function pronounce that takes an integer
X from 1 to 999 and return how X is pronounced
iIn English.

def pronounce(Xx):
#o...

* For example:

— pronounce(1) should return 'one'
— pronounce(57) should return 'fifty-seven'’

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

