Theoretical Computer Science

Jittat Fakcharoenphol

Kasetsart University

December 20, 2025



A little bit about history

@ When did research in computer science start?



A little bit about history

@ When did research in computer science start?
o Long before the first working computer was constructed.

@ Theorists worked on “research in computation”.



Theory = Practice



Turing machine

http://en.wikipedia.org/wiki/Image:Alan_Turing_Memorial_Closer.jpg



Turing machine

@ In 1931, defined Turing machine, a really
simple machine that works on an infinite tape.

aTalBT6I0a]s

http://en.wikipedia.org/wiki/Image:Alan_Turing_Memorial_Closer.jpg



Turing machine

@ In 1931, defined Turing machine, a really
simple machine that works on an infinite tape.

aTalBT6I0a]s

@ Turing also proved that

http://en.wikipedia.org/wiki/Image:Alan_Turing_Memorial_Closer.jpg



Turing machine

@ In 1931, defined Turing machine, a really
simple machine that works on an infinite tape.

aTalBT6I0a]s

@ Turing also proved that

(a) one can construct a Turing machine that can
performs any computation performed by any
Turing machine, and

http://en.wikipedia.org/wiki/Image:Alan_Turing_Memorial_Closer.jpg



Turing machine

@ In 1931, defined Turing machine, a really
simple machine that works on an infinite tape.

aTalBT6I0a]s

@ Turing also proved that

(a) one can construct a Turing machine that can
performs any computation performed by any
Turing machine, and

(b) there exists some problem that cannot be
solved by Turing machines.

http://en.wikipedia.org/wiki/Image:Alan_Turing_Memorial_Closer.jpg



Universal Turing machines

Turing machines shifted the focus from building machines to perform specific tasks to
building general-purpose machines.



Universal Turing machines

Turing machines shifted the focus from building machines to perform specific tasks to
building general-purpose machines.

Historical developments:

@ 1945: Von Neumann's First Draft of a Report on the EDVAC proposed the idea of
a stored-program computer.

@ 1940s: First electronic computers (ENIAC, EDVAC)
@ 1960s: High-level programming languages (FORTRAN, COBOL)



Practice = Theory



Working programmable digital computers

@ Designed by John Mauchly and J. Presper Eckert from University of Pennsylvania.
(Completed 1946)

2http://en.wikipedia.org/wiki/Image:Eniac.jpg



Reliability

@ Some people predicted that the ENIAC won't run.



Reliability

@ Some people predicted that the ENIAC won't run.

o It had 17,468 vacuum tubes. The tube failures would stop the machine so
frequently, too frequently.



Reliability

@ Some people predicted that the ENIAC won't run.

o It had 17,468 vacuum tubes. The tube failures would stop the machine so
frequently, too frequently.

@ However, failures usually occur when turning the machine on and turning it off.
So the engineers solved this reliability problem by never turning the machine off.



Dealing with errors

@ von Neumann studied this problem

gates in 1956.

PROBABILISTIC LOGICS AND THE SYNTFESIS OF RELLARLE
CRGANISMS FROM UNRELTABLE COMPONENTS

3. von Neumsnn

1. INTRODUCTION

The paper that follows 1s based on motes taken by Dr. R. 8. Plerce
on £1ve lectures given by the author at the Celifornis Institute of
Technology in Jamuary 1952. They have been revised by the suthor but they
reflect, spart from minor changes, the lectures as they were delivered.

The subject-matter, as the title suggests, is the role of error
1n logies, or in the physical implemsntation of logics — in automata-
synthesis, Error is viewed, therefore, not ss en extrancous snd misdircoted
or misdirecting accident, but as en essentisl part of the process under con-
sideration — its importance in the synthesis of eutomsts being fully com-
parable to that of the factor which is nomally considered, the intended end
correot loglesl structure.

Our present treatment of error is unsatisfactory and ed hoe. It
15 the author's conviction, volced over many years, that error should be
treated by thermodynanical methods, and be the subject of a thermodynamical
theory, as information has been, by the work of L. Szilard and C. E. Shamnon
(Cf. 5.2]. The present trestment falls far short of achieving this, but it
assesbles, it is hoped, some of the building msterisls, which will have to
enter into the final structure.

The suthor wants to express his thanks to K. A. Brueckner and
M. Gell-Mann, then at the University of Illinois, to whose discussions in
1951 he owes some important stimili on this subject; to Dr. R. S. Plerce st
the Californis Institute of Technology, on whose excellent notes this ex-
position is based; and to the California Institute of Technology, whose
Snvitation to deliver these lectures combined with the very werm reception
by the sudlence, caused hin to write this peper in its present form, and
Wwhose cooperation in comnsotion with the present publicstion is much

appreciated.
w3

and proposed a solution based on majority

1n v spevaas vaou) vek e weems s

<+ 3% <n 1is possible. Honce, the chence of keeping the error under con-
trol 1ies in maintaining the conditions of the special case throughout the
construction. We will now exhibit a method which achieves this.

8.3 Synthests of Automata
8.3.1 THE HEURISTIC ARGUMENT. The basic idea in this procedurs is very
simple. Instead of running the incoxing data into & single mschine, the
seme information is similtaneously fed into a mumber of identical machines,
and the result that comes out of a majority of these machines is sssumed to
Do true. It must be shown that this technigue can really be used to control
error.

Denote by O the glven network (sssume two OUCPUUS in the specific
Jnstance ploture in Figure 26). Construct O in triplicate, labeling the
coples O, 07, 03 respectively. Consider the system shown in Figure 26.

. FIGUEE 26

For each of the finsl majority organs the conditions of the speotal
case considered sbove obtain. Consequently, if 1 is an upper bound for
the probability of error at any output of the original network O, then
() a e e (1= 26) (302 - 203) = £ ()
15 an upper bound for the probability of error at any output of the ped net-
work O+. The graph is the curve n* =f (n), shown in Pigure 27.

Consider the intersections of the curve with the diagonsl 1% = 1:
Pirst, g -1/2 1is at any rate such an intersection. Dividing 7 - £, (1)
by g - 1/2 gives 2((1 - 2)? - (1 = 2¢)q + ¢), hence the other inter-



von Neumann'’s analysis (1)

Suppose that each component fails with probability at most 7. Let's make three copies
of each component and use majority gates to decide the output of each component.



von Neumann'’s analysis (1)

Suppose that each component fails with probability at most 7. Let's make three copies
of each component and use majority gates to decide the output of each component.

However, the majority gate itself may fail. Suppose that the majority gate fails with
probability at most e.



von Neumann'’s analysis (1)

Suppose that each component fails with probability at most 7. Let's make three copies
of each component and use majority gates to decide the output of each component.

However, the majority gate itself may fail. Suppose that the majority gate fails with
probability at most e.

Therefore the probability that the output is wrong is at most

€+ 3n.



von Neumann's analysis (2)

With more assumptions, we can do better. We assume that errors are independent.
There are two cases. When the input to the majority gate is “good”, i.e., at most one
of the three inputs is wrong. This happens with probability at most

E=3n*(1—n)+n° =30 -2,

However, the majority gate itself may fail. Suppose that the majority gate fails with
probability at most €. Then, the output is correct with probability at least

(1-e)(1— E).



von Neumann's analysis (3)

On the other hand, if the input to the majority gate is “bad”; with probability ¢, the
output is (accidentally) correct; this happens with probability®

e-E.
Let f.(n) be the probability that the output is wrong. Then,

f(n) = e+ (1 —2€)E = e+ (1 — 2¢)(3° — 21%).

3This is wrong, as 7 is only the upperbound, but let's ignore this fact for now.



von Neumann's analysis (4)

When we perform this construction repeatedly, we want to control the error probability
to always be below 7.



von Neumann's analysis (4)

When we perform this construction repeatedly, we want to control the error probability
to always be below 7.
This leads to the following inequality:

€+ 3f(n) <,

or
4e +3(1 —26)(3* — 21°) <.



von Neumann's analysis (4)

When we perform this construction repeatedly, we want to control the error probability
to always be below 7.
This leads to the following inequality:

€+ 3f(n) <,

or
4e +3(1 —26)(3* — 21°) <.

Solving this leads to the condition ¢ < 0.0073.



von Neumann's analysis (4)

When we perform this construction repeatedly, we want to control the error probability
to always be below 7.
This leads to the following inequality:

€+ 3f(n) <,

or
4e +3(1 —26)(3* — 21°) <.

Solving this leads to the condition € < 0.0073. Also, if we want error probability 1 to
be below 2%, we need e < 0.0041.



von Neumann's analysis (4)

When we perform this construction repeatedly, we want to control the error probability
to always be below 7.
This leads to the following inequality:

e+ 3f(n) <,
or
4e +3(1 —26)(3* — 21°) <.

Solving this leads to the condition € < 0.0073. Also, if we want error probability 1 to
be below 2%, we need e < 0.0041.

Remark: This construction is not practical, as the circuit size grows exponentially.



Practice = Theory



Practice = Theory
= Future development



Quantum computation

@ Reliability becomes an issue again when people try to build
quantum computers.

@ The quantum threshold theorem:
A quantum circuit on n qubits and containing p(n) gates may be
simulated with probability of error at most € using

O(log®(p(n)/e) - p(n))

gates (for some constant ¢) on hardware whose components fail with
probability at most p, provided p is below some constant threshold,

aGambetta, Chow, and
Steffen, npj quantum
information, 2017 1% < Pth,

and given reasonable assumptions about the noise in the underlying
hardware.



Backbone of theoretical computer science

e Upperbounds (prove that something is possible):



Backbone of theoretical computer science

e Upperbounds (prove that something is possible):

o Algorithms (constructive upperbounds)
e Data structures
o Complexity classes (e.g., P, NP, BPP, BQP, etc.)



Backbone of theoretical computer science

e Upperbounds (prove that something is possible):

o Algorithms (constructive upperbounds)
e Data structures
o Complexity classes (e.g., P, NP, BPP, BQP, etc.)

@ Lowerbounds (prove that something is impossible):



Backbone of theoretical computer science

e Upperbounds (prove that something is possible):

o Algorithms (constructive upperbounds)

e Data structures

o Complexity classes (e.g., P, NP, BPP, BQP, etc.)
@ Lowerbounds (prove that something is impossible):

e Hardness results (e.g., NP-completeness, etc.)
e Lowerbounds for specific models of computation

But there are many other areas that study different aspects of computation, e.g.,
logics, information theory and cryptography, or studies of other computing models.



