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A little bit about history

When did research in computer science start?

Long before the first working computer was constructed.

Theorists worked on “research in computation”.
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Theory ⇒ Practice



Turing machine

In 1931, defined Turing machine, a really
simple machine that works on an infinite tape.

a a b b

control

Turing also proved that

(a) one can construct a Turing machine that can
performs any computation performed by any
Turing machine, and

(b) there exists some problem that cannot be
solved by Turing machines.
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Universal Turing machines

Turing machines shifted the focus from building machines to perform specific tasks to
building general-purpose machines.

Historical developments:

1945: Von Neumann’s First Draft of a Report on the EDVAC proposed the idea of
a stored-program computer.

1940s: First electronic computers (ENIAC, EDVAC)

1960s: High-level programming languages (FORTRAN, COBOL)
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Practice ⇒ Theory



Working programmable digital computers

2

Designed by John Mauchly and J. Presper Eckert from University of Pennsylvania.
(Completed 1946)

2http://en.wikipedia.org/wiki/Image:Eniac.jpg



Reliability

Some people predicted that the ENIAC won’t run.

It had 17,468 vacuum tubes. The tube failures would stop the machine so
frequently, too frequently.

However, failures usually occur when turning the machine on and turning it off.
So the engineers solved this reliability problem by never turning the machine off.
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Dealing with errors

von Neumann studied this problem and proposed a solution based on majority
gates in 1956.



von Neumann’s analysis (1)

Suppose that each component fails with probability at most η. Let’s make three copies
of each component and use majority gates to decide the output of each component.

However, the majority gate itself may fail. Suppose that the majority gate fails with
probability at most ϵ.
Therefore the probability that the output is wrong is at most

ϵ+ 3η.



von Neumann’s analysis (1)

Suppose that each component fails with probability at most η. Let’s make three copies
of each component and use majority gates to decide the output of each component.
However, the majority gate itself may fail. Suppose that the majority gate fails with
probability at most ϵ.

Therefore the probability that the output is wrong is at most

ϵ+ 3η.



von Neumann’s analysis (1)

Suppose that each component fails with probability at most η. Let’s make three copies
of each component and use majority gates to decide the output of each component.
However, the majority gate itself may fail. Suppose that the majority gate fails with
probability at most ϵ.
Therefore the probability that the output is wrong is at most

ϵ+ 3η.



von Neumann’s analysis (2)

With more assumptions, we can do better. We assume that errors are independent.
There are two cases. When the input to the majority gate is “good”, i.e., at most one
of the three inputs is wrong. This happens with probability at most

E = 3η2(1− η) + η3 = 3η2 − 2η3.

However, the majority gate itself may fail. Suppose that the majority gate fails with
probability at most ϵ. Then, the output is correct with probability at least

(1− ϵ)(1− E ).



von Neumann’s analysis (3)

On the other hand, if the input to the majority gate is “bad”; with probability ϵ, the
output is (accidentally) correct; this happens with probability3

ϵ · E .

Let fϵ(η) be the probability that the output is wrong. Then,

fϵ(η) = ϵ+ (1− 2ϵ)E = ϵ+ (1− 2ϵ)(3η2 − 2η3).

3This is wrong, as η is only the upperbound, but let’s ignore this fact for now.



von Neumann’s analysis (4)

When we perform this construction repeatedly, we want to control the error probability
to always be below η.

This leads to the following inequality:

ϵ+ 3fϵ(η) ≤ η,

or
4ϵ+ 3(1− 2ϵ)(3η2 − 2η3) ≤ η.

Solving this leads to the condition ϵ < 0.0073. Also, if we want error probability η to
be below 2%, we need ϵ < 0.0041.
Remark: This construction is not practical, as the circuit size grows exponentially.
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Quantum computation

a

a
Gambetta, Chow, and

Steffen, npj quantum
information, 2017

Reliability becomes an issue again when people try to build
quantum computers.

The quantum threshold theorem:
A quantum circuit on n qubits and containing p(n) gates may be
simulated with probability of error at most ϵ using

O(logc(p(n)/ϵ) · p(n))

gates (for some constant c) on hardware whose components fail with
probability at most p, provided p is below some constant threshold,

p < pth,

and given reasonable assumptions about the noise in the underlying

hardware.



Backbone of theoretical computer science

Upperbounds (prove that something is possible):

Algorithms (constructive upperbounds)
Data structures
Complexity classes (e.g., P, NP, BPP, BQP, etc.)

Lowerbounds (prove that something is impossible):

Hardness results (e.g., NP-completeness, etc.)
Lowerbounds for specific models of computation

But there are many other areas that study different aspects of computation, e.g.,
logics, information theory and cryptography, or studies of other computing models.
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