Design Templates
of Dynamic Graph Algorithms

Thatchaphol Saranurak
University of Michigan

December 8, 2025

Dynamic Algorithmes:
Algorithms that Interact

New output

Dynamic graph algorithms

Setting:
1. Given aninput graph G, preprocess it.

2. Then, for each time step,

* Given an update Or a query (generated online/on the fly),
 update the data structure and/or answer the query.

* Update are often insertions and deletions of an edge (a vertex sometimes)

* Example of tasks

* Answer queries: Is G connected? what is (s, t)-distance?
* Maintain objects: minimum spanning tree, maximal matching, etc.

Terminology

* (;; = the graph after i steps
* Update sequence: the sequence of updates/queries

* Update time: time needed at each step.
* T worst-case update time: every step requires < T time.
e T amortized update time: after k steps (orarge cnoven), the total time is < kT

* Preprocessing/initialization time: time to process G|

Update time
Initialization time < - —
(does not count in

update time) e — —> Worst-case update time

I —>» Amortized update time

>

Go Gy Gy Gs Gy Gs .. ‘steps

Fully dynamic vs. Partially Dynamic

* Fully dynamic algorithms handle both insertions and deletions

* Partially Dynamic
* incremental algorithms handle only insertions
* decremental algorithms handle only deletions

In this talk, you will learn...

3 templates for designing dynamic graph algorithms
1. Rebuild in the background
2. Batching
3. \Vertex sparsifiers

All templates are general.
They work for every problem.
Only Template 3 is specific to graphs.

For each template, | will give a complete proof
of a concrete algorithm.

Template O (warm-up):

Rebuild

Fully dynamic (1 + €)-approx. matching

° Def: > >
* Matching is a set of vertex-disjoint edges
» Given graph G, u(G) = size of maximum matching z Z
. Probl'em: | | ot - orse oy
* Init: graph G with n vertices ot chile matchin
* Then: online sequence of edge insertions/deletions Y /“(6)='_Z,

* Goal: maintain (1 + €)-approx. of u(G)

* Algo:
* Trivial: O(|E(G)|/€) = 0(n?/€) update time. (recompute from scratch after edge update)

* Today: O(n/€e?) update time.

Algorithm

* Repeat:

Worst-case

— steps

update time £
A ts €
|E(Ge,)|/e IE(Gy,)|/e
b — b ~ PRE! ~ J
€fle, €fle, €fle,

* (Rebuild step): i < (1 + €)-approx. of u(G) computing from scratch

* For the next €[i steps, just return (i.

* Correct:

 Each edge update may change the size of u(G) by at most 1.

* So, u(G) = (1 + e)fi + €fi at all time.

 That s, fi is always (1 + O(€))-approx. of u(G)

Analysis

* Update time:

. |E(Gt)|/€
0 (eu(Ge)

) amortized update time.

« = 0(n/e?). why?

e Claim: |[E(G)| < u(G) - 2n
* Let M" be a maximum matching |[M*| = u(G)

* Observe: every edge is incident to M* (otherwise M~ is not max).

* Deletinganedgee = (u,v) in M~

removes at most deg(u) + deg(v) <2nedgesin G

* Repeat 1 (() times, no edge left.

Worst-case

update time £l
A ts €
|E(Ge,)l/€ |E(Gy,)|/e
»steps
@ — y EZ ~ y {3 \ Yy,
€fle, €fle, €fle,

Template O: Rebuild

Given algo A Worst-case 4 = tp
* can handle L updates update time | < ¢
* t, =rebuild time =
* t, = worst-case update time

Obtain algo A’ <t

<t <ty
* can handle infinite updates .
+ 0(2+ 1, amortized update time \DDDDZHHHHH“DDUDZDDDDD“DDDDZDDDDELsteps

In our case, fully dynamic (1 + €)-matching with 0(n/e€?) amortized update time
+ L=0(en(®)), ty = 0D, t, = 0(1)

€

Next: worst-case update time instead

Template 1:
Rebuild in the Background

. . Lecture Notes in
Overmars’83 “Global Rebuilding”

Used in many many papers.

Mark H. Overmars

The Design of
Dynamic Data Structures

Berlin Heidelberg GmbH

Recall

* Givenalgo A
e can handle L updates
* t, =rebuild time
* t, = worst-case update time

* algo A’ with 0(%” + t,,) amortized update time

Worst-case #4

update time

7S ty
<t <t,
<ty <ty <ty
T NIRRT ITENTT | FTT T TR T -
L L L

Recall

* Givenalgo A
e can handle L updates
* t, =rebuild time
* t, = worst-case update time

* algo A’ with 0(%’ + t,,) amortized update time

- Next algo:
Worst-case 1 = lp .
update time | < ¢, * Small worst-case update time.
Sty e Correct on half of update

sequence (this is easy to fix)

= | B | | B |

steps

\

r

\

,

\ |
v

[Simplified picture J

Algorithm A" 0(%’ + t,,) worst-case update time

Divide each phase of L steps from [y, ty + L] into 3 periods

1. (Rebuild) first L /4 steps:

* Rebuild data structure for G, but distribute the work evenly on the period.

* lgnore updates.

2. (Catch-up) next L/4 steps:
* Each step, feed two updates. (Double speed)

* Observe: At the end, data structures catch up with all updates

3. (Active) last L/2 steps: Worst-case |

* Feed update normally. update time
* Get correct answers in this period

Worst-case update time: O(t, /L + t,,)

Correct on half of update sequence.

|

How to fix?
Correct Correct
o o
L/4 L/4
2ty 2t,,
2y ty
.

J

steps

Correct answers at all steps

* Make two instances cfl’ll and chlzl. (Increase update time by factor 2.)
* Schedule their periods so that...
* At every step, one of them is correct.

update time
t Correct ¢, Correct ¢, Correct
A L/4 L/4 , L/4
t 2t
» steps
L L L
update time
/7 Correct ¢, Correct = ¢, Correct ty
A L/4 L/4 L/4
o 2 2ty 2ty 2ty
Preprocessing time tu i ty
before seeing any update. \]1 ~ - » Steps

Does not count in update time. Z Z 7

Conclude: Rebuild in the background

* Given algo A
e can handle L updates
* t, = rebuild time
* t,, = worst-case update time

 Obtain algo A"

t :
. O(Tb + t,,) worst-case update time

e Conclude:

1
A1

A

update time
ty
4

L/

Correct ty
L/4
Ly

Correct

ty Correct

[H
steps

update time

Correct

lJ!

L L

ty Correct = t,

L4 L/4
!-.‘F

(U
steps

e fully dynamic (1 + €)-matching with O(n/e?) worst-case update time.
* Exercise: O(deg.x (G)/€?) worst-case update time

Template 2:
Batching

Used in

Dynamic MST [HK'01]

Dynamic APSP with worst-case update time [Thorup’05] [ACK’17] [PW’20]
Expander pruning with worst-case update time [NSW’17] [BBGNSSS'22] [1S’'22]
Dynamic DFS [BCCK’16]

Let me know more

Decremental connectivity

* Problem:
* Init: graph G with n vertices and m edges
* Then: online sequence of edge deletions only
* Maintain: is G connected?

e Algo:

* Trivial: O (m) worst-case update time. (8Fs, for example)
* Today: O (m?/3) worst-case update time.

One-batch decremental connectivity

Often easier
to design

* Setting for one-batch algorithms
* Init: graph G
* Update: asingle batch D of d edge deletions.
* Answer: is G' = G \ D connected?

* Will show later: one-batch algo Ap,tcn With
* Init time: 0(m)
* Update time: 0(d?)

* Next: how to get 0(m?/3) worst-case update time using Apatch

Reduction to one-batch algorithms

* Simple idea: to handle update sequence with one-batch algos Ayatch,

* Given the it" update u;,
feed the batch of first i updates (14, ..., U;) into Ay atcp (Using 0(i%) time, for us)

Recall:
* Obtain algo A that Given algo A
can handle L updates
e can handle L updates t, = rebuild time
e rebuild time: t, = é(m) t,, = worst-case update time

_ — Obtain algo A"
* update time: t, = O(L) 0(%” + t,,) worst-case update time

» Get algo A’ with O(m/L + L?) = 0(m?/?) worst-case update time
* by choosing L = m'/3

Remain to show Apatch---

|[deas of one-batch algo Apatch

* Init: T < spanning tree of G

» Update: given a set D of d edge deletions,
1. Ty,..,T,; < connected components of T\ D.
2. Sufficient: find a non-tree-edge between T; and T, if exists, for i,j € [d’]

|[deas of one-batch algo Apatch

* Init: T < spanning tree of G

» Update: given a set D of d edge deletions,
1. Ty,..,T,; < connected components of T\ D.
2. Sufficient: find a non-tree-edge between T; and T, if exists, for i,j € [d’]

Next:
* show how to find these edges
* Need two tools:
* Euler-tour
* 2d-range query

Basic tools for one-batch algo Apatch P

e 2d-range query: P is a set of points in 2d.

1. Update: Insert/delete a pointin P in O(1) time
2. Query: Given rectangle I, X I, returnapointp € PN (I, X 1)) in 0(1) time

* Euler-tour:
* Represent any tree T as a path.

* See example:
 Eulertourof Tis Eu(T) = (1,2,3,4,5,4,3,6,7,6,3,2)

e Each edge in T corresponds to 2 edges in Eu(T")

6 7

H L

U

Basic tools for one-batch algo Apatch

e 2d-range query: P is a set of points in 2d.

1. Update: Insert/delete a pointin P in O(1) time
2. Query: Given rectangle I, X I, returnapointp € PN (I, X 1)) in 0(1) time

e Euler-tour:
* Represent any tree T as a path.

* See example:
 Eulertourof Tis Eu(T) = (1,2,3,4,5,4,3,6,7,6,3,2)

e Each edge in T corresponds to 2 edges in Eu(T")

6 7

H L

U

One-batch algo Apatch

5 &
. 4
* Init: 12(343]2565 2
1. T « spanningtree of G 1 " .
O(m) 2. Eu(T) < Euler-tour of T %, ®
time | 3. For each non-tree edge (u, v), 3
add (minrankg,, (1), minrankg, - (v)) to set P 2 .
6 o
2

* Update: given a set D of d edge deletions,
o) | 1. Delete pointsin P corresponding to deleted non-tree edges
time | 2. [y, .., [, « intervals of Eu(T) after deleting tree edges.

o J 3- Queryl; X [jtoforalli,j € [d"] o
time = Find a non-tree-edge between T; and T; for all i, j € [d']

Conclude: dynamic algo from one-batch algo

* Get: one-batch algo Ap,tcn With
* Init time: 0(m)
* Update time: 0(d?)

* By previous reduction: from Ap,icn, We get
* Decremental connectivity algorithm with 0(m2/3) worst-case update time

Conclude: dynamic algo from one-batch algo

* If we have: one-batch algo Ay, With
* Init time: 0(m)
* Update time: 0(d)

* By previous reduction: from Ap,tcn, We would get
* Decremental connectivity algorithm with O(ml/z) update time

Remark:
. * Most 2-batch algos generalize to the k-batch
Exe Fc|se setting. (not for 1-batch algos)
* For example, Today’s 1-batch algorithm
does not work in the 2-batch setting. Why?

 Setting for 2-batch algorithms:

* Init: graph G

 First update: a batch D, of d; edge deletions.

* Second update: a batch

* Answer: isG' =G\ (D, UD,) connected?
Exercise:
Given 2-batch algo Ay a¢ch With

* Init time: O(m)

* First update time: 0(d,)

e Second update time:
1. Show a dynamic algorithm with 0(m'/3) worst-case update time.
2. Generalize to the k-batch setting, get 0(m/**1)) worst-case update time

Before Template 3:
Introduction to Vertex Sparsifiers

Vertex Sparsifiers (aka Mimicking Networks)

Setting:
* Input: graph G = (V,E), terminalsetS €V
Output: graph Hs.t. S € V(H) and
© [EC(H)| = ||
* H preserves information in G related to S. Write “H = G w.r.t. §”
H is called a sparsifier of G w.r.t. S.

Example: Vertex sparsifier for shortest paths
* For any k, there exists H s.t.
« [E(H)| = 0(IS[n*/*)
* Foreachu,v € S, dist; (u, v) = dist;(u, v) up to O (k) factor.

Today: Vertex sparsifier for minmax paths

Minmax paths and Minimum Spanning Trees (MST)

* (s,t)-minmax path P* has minimum m%x w(e) (w(e) is weight of edge e)
eepP*
* minmax(s, t) := maxw(e)
eepP”
« Key point: MST preserves all minmax paths Remember this.

 T:MSTofG.
e Pr(s,t):unique (s,t)-pathin T

Claim: P (s, t) is (s, t)-minmax path in G forall s, t i /

Proof: Otherwise, there is another (s, t)-path P’ s.t.
* emnax < heaviest edgein Pr(s,t)
* maxw(e) < w(emay)
e

So, thereis e’ € P’ s t.
« T"=TUe"\ epax is a spanning tree
* but w(T") < w(T). Contradiction.

Vertex sparsifier for minmax paths

Input: graph ¢ = (V,E), terminalsetS €V

Output: graph H
* [ECH)| = 0(SD
* Forallu,v € S, minmaxy (u, v) = minmax; (u, v). (Write H = iymax G W-I-t S)

S
Warming-up Algo: @ \
e Whatif S = {u, v}? G M T

* Easy: H < {(u,v)} where wy(u, v) « minmax; (u, v)

Vertex sparsifier for minmax paths

Input: graph G = (V,E), terminal setS €V
Output: [/ where S € V(H)

* |[ECH)| =0(S])
* Forall u,v € §, minmaxy (u, v) = minmax; (u, v)

Algo:
1. T « MSTof G.

2. S" <« LCA_Closure;(S).
* Forallu,v € S',LCA(u,v) € S'.
* Note that |S'| < 2[S].

3. For each "adjacent" u,v € S,
Add (u, v) into H where wy, (1, v) « max weight in Py (u, v)

Correctness: Exercise
Hint: (MST preserves all minmax paths + the warm-up case)

Time: O(m) Size: 0(|S])

Composability

Def: The similarity relation “=” is composable if
1. H=Gwrt. S
2. e=(u,v)whereu,v €5,
Then, H+e =G+ ewrt. S é

Lemma: The relation =,,inmax IS cOMposable.

Proof: suppose H# =minmax 0 W.r.t. S. For any (s, t) where s,t € S,

minmax (s, t)

minmax;,.(s,t) = min
max{minmaxg (s, v), w(v, u), minmax; (u, t)}

Composability

Def: The similarity relation “=” is composable if
1. H=Gwrt. S
2. e=(u,v)whereu,vesS,
Then, H+e =G+ ewrt. S é

Lemma: The relation =,,inmax IS cOMposable.

Proof: suppose H# =minmax 0 W.r.t. S. For any (s, t) where s,t € S,

minmax (s, t) minmaxy (s, t)
= min = minmaxy . (s,t)

minmax;,.(s,t) = min {

max{minmaxg (s, v), w(v, u), minmax; (u, t)} max{minmax (s, v), w(v, u), minmaxy (u, t)}

Template 3:
Vertex Sparsifiers

* The template is explicit in [GHP’17, CGHPS’20]

* Offline dynamic algo for MST [Epp’94] and O(1)-connectivity [PSS’'19, CDLKPPSV’20]. Non-offline version [NSW’17, JS'20]
* Dynamic effective resistance [GHP’18, DGGP’19]

* Modern max flows algorithms

Plan

1. Show reduction
* Given a fast algorithm for vertex sparsifier for minmax paths,

* Obtain offline dynamic algorithm for minmax paths
The template work for any problem.

2. Discuss how to get non-offline dynamic algorithms

3. Open problems (a lot of growth, promising)

Anyway, what are offline algorithms?

Offline fully dynamic minmax paths

* ASsume for notational convenience:
* At step i, we are given both edge insert/delete (u;, v;) AND query (s;, t;)

* Input: whole sequence of m updates/queries (think |£(G,)| < m for all steps i)
» “Offline”: get whole sequence, not revealed to us one by one like before

* Output: for all i, compute minmaxg, (s;, t;)

e Trivial: ~ O(m?) time.

¢ Today: é(ml's) time... then 6(771) time (Think O(1) per update/query)

Offline algo: high-level idea

* Our goal:
* Forall i, compute H; = G; w.r.t. {s;, t;}. Note |E(H;)| = 0(1).
* Then:

* For all i, compute minmaxg, (s;, t;) = minmaxg,(s;, t;) in 0(m) total time.

G, G, G3 G, Gs Gg G, Gg Gq
» m = 9 steps

Trivial way -
to compute H; 0 (m?) time

H, H, H, H, Hs Hs H, Hg H,

Compute all minmaxg, (s;, t;) in O(m) time

Offline algo: high-level idea

* Our goal:
* Forall i, compute H; = G; w.r.t. {s;, t;}. Note |E(H;)| = 0(1).
* Then:

* For all i, compute minmaxg, (s;, t;) = minmaxg,(s;, t;) in 0(m) total time.

G, G, G3 G, Gs Gs G, Gg Go
» m = 9 steps

Less trivial way Vi
intervals

to compute H; 0(m'>) time

v

H, H, H, H, Hs Hs H, Hg H,

Let’s see the details...

Set up notations

Divide update sequence into intervals 7 = {11, ...,I\/m} of length /m. FixI € 7.

* Interval of edge e: I, = [insert_time(e), delete_time(e)]

* Permanent edgesin I: El ={ellcl} |E1p ~m
* Updated edgesin I: Eff={ellInl, # 0,1} |E}| = Vm
* Terminals for I: S, =V(E)UV(Q,) where O, =U,; {s;,t;}. |S;| = Vm

* Think: S; are endpoints of updates/queries during interval I.

i
-4:delete_time(e;)

““““ e

,,,,,,,,, i

,,,,,,,,,,,,,,

<<<<<<<<<<<<<<<<<<<<<<<

>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<

Ep insert_time(e;)
I

>>>>>>>>>>>>>>>>>>>>>>

_ _ ERRRRRRRARRR R — > m steps
I, of size ym I, of size ym I of size ym

\

Permanent edges in I: EP ={ell <1}
Updated edges in I: Eff={ellInl, # 0,1}

mls_tlme Of-ﬂlne algo Terminals for I: Si=V(EMNVV(Q)

Algo: Forall] € 7,
1. Build gmteval = P wirt, S,
2. Foreachi €l
o pjInsert HlInterval U (G- \ Ep)
l L I
e Build H; = H™™w.rt. {s;,t;}

H¢
~ - < - > m steps of size Q())
Iy of size \/m I, of size ym I ji7 of size ym

Permanent edges in I: EP ={ell <1}
Updated edges in I: Eff={ellInl, # 0,1}

mls_tlme Of-ﬂlne algo Terminals for I S;=V(EHUV(Q)

Algo: Forall I € 7,
1. Build H/rterval = FP wrt, S,
2. Foreachi el
. Hilnsert — HIInterval U (Gi \ Elp)
e Build Hi = Hl-InsertW.r.t. {Si' tl}

Correctness: Want to show H; = G; w.r.t. {s;,;} for each i
« H"S®T' = G, w.rt. S;
o grterval = fPwrt. S, from Step 1
- girteval y (G \ EP) = EP u (G, \ E]) w.rt. S; by composability

4

of size Q1)

Permanent edges in I: EP ={ell <1}
Updated edges in I: Eff={ellInl, # 0,1}

mls_tlme Of-ﬂlne algo Terminals for I: Si=V(EMNVV(Q)

Algo: Forall I € 7,
1. Build H/nterval = FP wrt, S,
2. Foreachi €1
. Hilnsert — HIInterval U (Gi \ Elp)
* Build Hi = Hl-InsertW.r.t. {Sl‘, tl}

Correctness:

« H"®™ =G, wirt. S,

« H"®™ =G, wurt. {s;,t;}asS; 2 {s;,t;}.
« H; = H™®™ w.rt. {s;,t,} by Step 2.2

* H; = G; w.r.t. {s;, t;} (DONE)

4

of size Q)

Permanent edges in I: EP ={ell <1}
Updated edges in I: Eff={ellInl, # 0,1}

mls_tlme Of-ﬂlne algo Terminals for I: Si=V(EMNVV(Q)

Algo: Forall] € 7, \/m loops
1. Build H/M*eval = EP wrt. S, 0(m) time
2. Foreachi€l m total loops 0(m'®)
o Hl_Insert - HIInterval U (Gi \ Elp) 0(\/%) time
e Build H; = H;"*"w.rt. {s5;,t;} 0(y/m) time
Correctness:

« HBSC™ = G, wirt. S,

« H"®™ =G, wurt. {s;,t;}asS; 2 {s;,t;}.
« H; = H™®™ w.rt. {s;,1,} by Step 2.2

* H; = G; w.r.t. {s;, t;} (DONE)

Summary: 0(m!>)-time offline algo

* For all i, obtain H; = G; w.r.t. {s;, t;}in O(m"'>) time

G, G, G G, Gs G; G, Gg Go

» m = 9 steps

» /1M
intervals

v 0(m'>) time

H, H, H; H, Hs He H; Hg Hy

Then, compute all minmaxg, (s;, t;) in 0(m) time

O (m)-time offline algo

* 2 levels of sparsifiers = 0 (m!->)-time algorithm
Gy G, G G, Gs G G, Gg Go

» m = 9 steps
> > >/
interval ~ .
- intervals O(mls) tlme

H, H, H; H, H: H; H, Hg Ho

* k levels of sparsifiers >0 (m*/%)-time algorithm
* Note: If sparsifiers have a-approx., get a’-approx. offline dynamic algorithms.

* For us, @ = 1 (exact). Setting k < logn, get O(m) time

Conclude: dynamic algo from vertex sparsifier

 We saw a black-box transformation:

[Fast vertex-sparsifier algorithms = Fast offline fully dynamic algorithms]

* Can get non-offline dynamic algorithm too (very similar, omitted).

* If, additionally, vertex-sparsifier algorithm can...
Many sparsifier algorithms

. naturally support add-terminals

-
If handle add-terminal operation = Fast algorithms

If handle add-terminal & delete operations = Fast fully dynamic algorithms
. J

*omit polylog(n) in size

Open problems in Dynamic vertex sparsifiers

Promising and rich area. Every red highlight below shows that some aspect might be improved.

S S N T

Minmax paths

Shortest paths

c-connectivity

Max flow (multicommodity)

Effective resistance

Low stretch trees

Fully dyn (epp9a) (Nsw'17]
Incremental [1zos] (cHps'20]
Fully dyn [ceHps'20]

Static [Liv23)

Fully dyn [coikppsv'20] is'20]
Static

Incremental [rsT14] [cGHPS'20]
Fully dyn unweighted [GRsT21]
Fully dyn [ceHps’20]

Static [ks'16] [DkPRs'16]

Fully dyn [pcer19] (saiLLps21]

Fully dyn [ckipps22)

logn

1

1
log S|
log*n
no@

polylogn

1+e
1+e

logn

|S|n1/k
pn + S|
|S|c?
1S]c2©
S|
S|
S|
pn + (S|
S|
pm + |S]
m/k

0(1)
0(Tl1/k)

0(1/B)
Poly

no(l) c9@©)

Poly
0(1)
no(l)

0(1/B)
0(m)
0(1/B%)
kne@

Conclusion

You have learned

* 3 templates for designing dynamic graph algorithms
1. Rebuild in the background
2. Batching
3. Vertex sparsifiers

* Along the way, many terminology in the area
* worst-case vs. amortized update time
* fully dynamic vs. partially dynamic (incremental/decremental)
* one-batch algorithms (a.k.a. sensitivity oracles, emergency algorithms)
 offline dynamic algorithms

Template 1: Rebuild in the background

update time
ty Correct ¢, Correct ¢, Correct
c/l” L/4 L/4 L/4
2t
1 Ztu £, u b Ztu £
, i ., steps
L L L
update time
cfl T Correct ty Correct by Correct ty
2 L/4 L/4 L/4
2t 2t
Lo 2ty ‘% " 7 v
- . » steps

L I L

Template 2: Batching

Often easy to
design

One-batch algorithms + rebuild in the background

' It works for k-batch algorithms too [nsw’17] [BBGNSSS 22] [1522]

Dynamic algorithms

Template 3: Vertex sparsifiers

Gy G G3 Gy Gs Gg Gy Gg Go
» m = 9 steps

/11
intervals

- menls . 0(m1S) time

Hy H Hz Hs Hs He H; Hg Ho

Learn more templates

1. (Recent and promising): Optimization methods for dynamic algos.

e Static solutions robust against update
(congestion balancing [BGS’20, '21], entropy-regularized solutions [JIST'22])

* Dynamic Multiplicative Weight Update [Gupta’14] [Bks'22] [BBLS'23]
* Dynamic Interior Point Methods [BLs22]

2. Given incremental algo = get offline fully dynamic algo (pr22]

3. Given decremental algo = get fully dynamic algo
* Problem-specific: Connectivity, MST, APSP

4. Any “decomposable” problems = get fully dynamic algo [overmars’ book]
e E.g. dynamic range searching, quad-tree, other geometric objects

Other Generic Technigues in Dynamic Graphs

* Expander decomposition
e Used for dynamic connectivity, shortest paths in both undirected and directed graphs
e My tutorial: Part 1 and 2
* My course on using expanders for fast algorithm (updated version in 1-2 months!)

* Edge-degree constrained subgraph (EDCS):
* key objects for dynamic matching
e Aaron’s tutorial

 Randomized Greedy:
e General approach for both dynamic maximal matching and maximal independent set
e Soheil’s tutorial

Thank you!

