
Design Templates
of Dynamic Graph Algorithms

Thatchaphol Saranurak
University of Michigan

December 8, 2025

Dynamic Algorithms:
Algorithms that Interact

User

Update to Input

New output

Algorithm

Dynamic graph algorithms

Setting:
1. Given an input graph 𝐺଴, preprocess it.
2. Then, for each time step,

• Given an update or a query (generated online/on the fly),

• update the data structure and/or answer the query.

• Update are often insertions and deletions of an edge (a vertex sometimes)

• Example of tasks
• Answer queries: Is 𝐺 connected? what is (𝑠, 𝑡)-distance?
• Maintain objects: minimum spanning tree, maximal matching, etc.

Terminology

• 𝐺௜ = the graph after 𝑖 steps
• Update sequence: the sequence of updates/queries
• Update time: time needed at each step.

• 𝑇 worst-case update time: every step requires ≤ 𝑇 time.
• 𝑇 amortized update time: after 𝑘 steps (for large enough 𝑘), the total time is ≤ 𝑘𝑇

• Preprocessing/initialization time: time to process 𝐺଴

steps

Update time

Initialization time
(does not count in

update time) Worst-case update time

Amortized update time

𝐺଴ 𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ 𝐺ହ …

Fully dynamic vs. Partially Dynamic

• Fully dynamic algorithms handle both insertions and deletions
• Partially Dynamic

• incremental algorithms handle only insertions
• decremental algorithms handle only deletions

In this talk, you will learn…

3 templates for designing dynamic graph algorithms
1. Rebuild in the background
2. Batching
3. Vertex sparsifiers

All templates are general.
They work for every problem.

Only Template 3 is specific to graphs.

For each template, I will give a complete proof
of a concrete algorithm.

Template 0 (warm-up):
Rebuild

Fully dynamic 1 + 𝜖 -approx. matching

• Def:
• Matching is a set of vertex-disjoint edges
• Given graph 𝐺, 𝝁 𝑮 = size of maximum matching

• Problem:
• Init: graph 𝐺 with 𝑛 vertices
• Then: online sequence of edge insertions/deletions
• Goal: maintain 𝟏 + 𝝐 -approx. of 𝝁(𝑮)

• Algo:
• Trivial: 𝑂 𝐸 𝐺 /𝜖 = 𝑂(𝑛ଶ/𝜖) update time. (recompute from scratch after edge update)
• Today: 𝑂(𝑛/𝜖ଶ) update time.

Algorithm

• Repeat:
• (Rebuild step): 𝜇෤ ← (1 + 𝜖)-approx. of 𝜇 𝐺 computing from scratch
• For the next 𝜖𝜇෤ steps, just return 𝜇෤.

• Correct:
• Each edge update may change the size of 𝜇 𝐺 by at most 1.
• So, 𝜇 𝐺 = 1 ± 𝜖 𝜇෤ ± 𝜖𝜇෤ at all time.
• That is, 𝜇෤ is always (1 + 𝑂(𝜖))-approx. of 𝜇 𝐺

steps

Worst-case
update time

𝑡ଵ 𝑡ଶ 𝑡ଷ

𝜖𝜇෤௧భ
𝜖𝜇෤௧మ

𝜖𝜇෤௧య

𝐸 𝐺௧భ
/𝜖

𝐸 𝐺௧మ
/𝜖

𝐸 𝐺௧య
/𝜖

Analysis

• Update time:
• 𝑂

ா ீ೟ /ఢ

ఢఓ ீ೟
amortized update time.

• = 𝑂(𝑛/𝜖ଶ). Why?

• Claim: 𝐸 𝐺 ≤ 𝜇 𝐺 ⋅ 2𝑛
• Let 𝑀∗ be a maximum matching 𝑀∗ = 𝜇(𝐺)

• Observe: every edge is incident to 𝑀∗ (otherwise 𝑀∗ is not max).
• Deleting an edge 𝑒 = (𝑢, 𝑣) in 𝑀∗

removes at most deg 𝑢 + deg 𝑣 ≤ 2𝑛 edges in 𝐺
• Repeat 𝜇(𝐺) times, no edge left.

steps

Worst-case
update time

𝑡ଵ 𝑡ଶ 𝑡ଷ

𝜖𝜇෤௧భ
𝜖𝜇෤௧మ

𝜖𝜇෤௧య

𝐸 𝐺௧భ
/𝜖

𝐸 𝐺௧మ
/𝜖

𝐸 𝐺௧య
/𝜖

Template 0: Rebuild

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• Obtain algo 𝒜′
• can handle infinite updates
• 𝑂(

௧್

௅
+ 𝑡௨) amortized update time

• In our case, fully dynamic (1 + 𝜖)-matching with 𝑂(𝑛/𝜖ଶ) amortized update time
• 𝐿 = Θ(𝜖𝜇 𝐺), 𝑡௕ = 𝑂(

ா ீ

ఢ
), 𝑡௨ = 𝑂(1)

• Next: worst-case update time instead

steps

Worst-case
update time

𝐿

≤ 𝑡௕ ≤ 𝑡௕

≤ 𝑡௕

𝐿 𝐿

≤ 𝑡௨ ≤ 𝑡௨ ≤ 𝑡௨

Template 1:
Rebuild in the Background

Overmars’83 “Global Rebuilding”
Used in many many papers.

Recall

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• algo 𝒜′ with 𝑂(
௧್

௅
+ 𝑡௨) amortized update time

steps

Worst-case
update time

𝐿

≤ 𝑡௕ ≤ 𝑡௕

≤ 𝑡௕

𝐿 𝐿

≤ 𝑡௨ ≤ 𝑡௨ ≤ 𝑡௨

Recall

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• algo 𝒜′ with 𝑂(
௧್

௅
+ 𝑡௨) amortized update time

steps

Worst-case
update time

𝐿

≤ 𝑡௕ ≤ 𝑡௕

≤ 𝑡௕

𝐿 𝐿

≤ 𝑡௨ ≤ 𝑡௨ ≤ 𝑡௨

Simplified picture

Next algo:
• Small worst-case update time.
• Correct on half of update

sequence (this is easy to fix)

Divide each phase of 𝐿 steps from [𝑡଴, 𝑡଴ + 𝐿] into 3 periods
1. (Rebuild) first 𝐿/4 steps:

• Rebuild data structure for 𝐺௧బ
but distribute the work evenly on the period.

• Ignore updates.

2. (Catch-up) next 𝐿/4 steps:
• Each step, feed two updates. (Double speed)
• Observe: At the end, data structures catch up with all updates

3. (Active) last 𝐿/2 steps:
• Feed update normally.
• Get correct answers in this period

Worst-case update time: 𝑂(𝑡௕/𝐿 + 𝑡௨)

Algorithm 𝒜′′: 𝑂(
௧್

௅
+ 𝑡௨) worst-case update time

steps

Worst-case
update time

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

Correct on half of update sequence.
How to fix?

Correct Correct

Correct Correct Correct

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨𝒜ଵ

ᇱᇱ

update time

CorrectCorrectCorrect

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4
2𝑡௨𝑡௨

𝒜ଶ
ᇱᇱ

update time

• Make two instances 𝒜ଵ
ᇱᇱ and 𝒜ଶ

ᇱᇱ. (Increase update time by factor 2.)

• Schedule their periods so that…
• At every step, one of them is correct.

Correct answers at all steps

Preprocessing time
before seeing any update.

Does not count in update time.

Conclude: Rebuild in the background

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• Obtain algo 𝒜′′
• 𝑂(

௧್

௅
+ 𝑡௨) worst-case update time

• Conclude:
• fully dynamic (1 + 𝜖)-matching with 𝑂(𝑛/𝜖ଶ) worst-case update time.
• Exercise: 𝑂(deg୫ୟ୶ (𝐺)/𝜖ଶ) worst-case update time Hint: 𝐸 𝐺 ≤ 𝜇 𝐺 ⋅ 2deg୫ୟ୶ (𝐺)

Template 2:
Batching

Used in
• Dynamic MST [HK’01]
• Dynamic APSP with worst-case update time [Thorup’05] [ACK’17] [PW’20]
• Expander pruning with worst-case update time [NSW’17] [BBGNSSS’22] [JS’22]
• Dynamic DFS [BCCK’16]
• Let me know more

Decremental connectivity

• Problem:
• Init: graph 𝐺 with 𝑛 vertices and 𝑚 edges
• Then: online sequence of edge deletions only
• Maintain: is 𝑮 connected?

• Algo:
• Trivial: 𝑂(𝑚) worst-case update time. (BFS, for example)

• Today: 𝑂෨(𝑚ଶ/ଷ) worst-case update time.

One-batch decremental connectivity

• Setting for one-batch algorithms
• Init: graph 𝐺
• Update: a single batch 𝐷 of 𝑑 edge deletions.
• Answer: is 𝐺ᇱ = 𝐺 ∖ 𝐷 connected?

• Will show later: one-batch algo 𝒜ୠୟ୲ୡ୦ with
• Init time: 𝑂෨(𝑚)
• Update time: 𝑂෨(𝑑ଶ)

• Next: how to get 𝑂(𝑚ଶ/ଷ) worst-case update time using 𝒜ୠୟ୲ୡ୦

Often easier
to design

Reduction to one-batch algorithms

• Simple idea: to handle update sequence with one-batch algos 𝒜ୠୟ୲ୡ୦,
• Given the 𝑖௧௛ update 𝑢௜,

feed the batch of first 𝒊 updates (𝑢ଵ, … , 𝑢௜) into 𝒜ୠୟ୲ୡ୦ (using 𝑂෨(𝑖ଶ) time, for us)

• Obtain algo 𝒜 that
• can handle 𝐿 updates
• rebuild time: 𝑡௕ = 𝑂෨(𝑚)

• update time: 𝑡௨ = 𝑂෨ 𝐿ଶ

• Get algo 𝒜′ with 𝑂෨ 𝑚/𝐿 + 𝐿ଶ = 𝑂෨ 𝑚ଶ/ଷ worst-case update time
• by choosing 𝐿 = 𝑚ଵ/ଷ

Recall:
Given algo 𝒜

can handle 𝐿 updates
𝑡௕ = rebuild time
𝑡௨ = worst-case update time

Obtain algo 𝒜′′

𝑂(
௧್

௅
+ 𝑡௨) worst-case update time

Remain to show 𝒜ୠୟ୲ୡ୦…

Ideas of one-batch algo 𝒜ୠୟ୲ୡ୦

• Init: 𝑇 ← spanning tree of 𝐺
• Update: given a set 𝐷 of 𝑑 edge deletions,

1. 𝑇ଵ, … , 𝑇ௗᇲ ← connected components of 𝑇 ∖ 𝐷. (𝑑ᇱ ≤ 𝑑 + 1)

2. Sufficient: find a non-tree-edge between 𝑇௜ and 𝑇௝, if exists, for 𝑖, 𝑗 ∈ [𝑑ᇱ]

Ideas of one-batch algo 𝒜ୠୟ୲ୡ୦

• Init: 𝑇 ← spanning tree of 𝐺
• Update: given a set 𝐷 of 𝑑 edge deletions,

1. 𝑇ଵ, … , 𝑇ௗᇲ ← connected components of 𝑇 ∖ 𝐷. (𝑑ᇱ ≤ 𝑑 + 1)

2. Sufficient: find a non-tree-edge between 𝑇௜ and 𝑇௝, if exists, for 𝑖, 𝑗 ∈ [𝑑ᇱ]

Next:
• show how to find these edges
• Need two tools:

• Euler-tour
• 2d-range query

• 2d-range query: 𝑃 is a set of points in 2d.
1. Update: Insert/delete a point in 𝑃 in 𝑂෨(1) time
2. Query: Given rectangle 𝐼௫ × 𝐼௬, return a point 𝑝 ∈ 𝑃 ∩ (𝐼௫ × 𝐼௬) in 𝑂෨(1) time

• Euler-tour:
• Represent any tree 𝑇 as a path.
• See example:

• Euler tour of 𝑇 is Eu 𝑇 = (1,2,3,4,5,4,3,6,7,6,3,2)

• Each edge in 𝑇 corresponds to 2 edges in Eu 𝑇

Basic tools for one-batch algo 𝒜ୠୟ୲ୡ୦

• 2d-range query: 𝑃 is a set of points in 2d.
1. Update: Insert/delete a point in 𝑃 in 𝑂෨(1) time
2. Query: Given rectangle 𝐼௫ × 𝐼௬, return a point 𝑝 ∈ 𝑃 ∩ (𝐼௫ × 𝐼௬) in 𝑂෨(1) time

• Euler-tour:
• Represent any tree 𝑇 as a path.
• See example:

• Euler tour of 𝑇 is Eu 𝑇 = (1,2,3,4,5,4,3,6,7,6,3,2)

• Each edge in 𝑇 corresponds to 2 edges in Eu 𝑇

Basic tools for one-batch algo 𝒜ୠୟ୲ୡ୦

• Init:
1. 𝑇 ← spanning tree of 𝐺
2. Eu 𝑇 ← Euler-tour of 𝑇
3. For each non-tree edge (𝑢, 𝑣),

add (minrank୉୳ ் 𝑢 , minrank୉୳ ் 𝑣) to set 𝑃

• Update: given a set 𝐷 of 𝑑 edge deletions,
1. Delete points in 𝑃 corresponding to deleted non-tree edges
2. 𝐼ଵ, … , 𝐼ௗᇲᇲ ← intervals of Eu 𝑇 after deleting tree edges. 𝑑ᇱᇱ = 𝑂(𝑑)

3. Query 𝐼௜ × 𝐼௝ to for all 𝑖, 𝑗 ∈ [𝑑ᇱᇱ]
 Find a non-tree-edge between 𝑇௜ and 𝑇௝ for all 𝑖, 𝑗 ∈ [𝑑ᇱ]

One-batch algo 𝒜ୠୟ୲ୡ୦

1 2 3 4 3 2 5 6 5 2
1
2
3
4
3
2
5
6
5
2

𝑂෨(𝑚)
time

𝑂෨(𝑑)
time

𝑂෨(𝑑ଶ)
time

Conclude: dynamic algo from one-batch algo

• Get: one-batch algo 𝒜ୠୟ୲ୡ୦ with
• Init time: 𝑂෨(𝑚)

• Update time: 𝑂෨(𝑑ଶ)

• By previous reduction: from 𝒜ୠୟ୲ୡ୦, we get
• Decremental connectivity algorithm with 𝑂(𝑚ଶ/ଷ) worst-case update time

Conclude: dynamic algo from one-batch algo

• If we have: one-batch algo 𝒜ୠୟ୲ୡ୦ with
• Init time: 𝑂෨(𝑚)

• Update time: 𝑂෨(𝑑)

• By previous reduction: from 𝒜ୠୟ୲ୡ୦, we would get
• Decremental connectivity algorithm with 𝑂(𝑚ଵ/ଶ) update time

Exercise

• Setting for 2-batch algorithms:
• Init: graph 𝐺
• First update: a batch 𝐷ଵ of 𝑑ଵ edge deletions.
• Second update: a batch 𝐷ଶ of 𝑑ଶ edge deletions.
• Answer: is 𝐺ᇱ = 𝐺 ∖ (𝐷ଵ ∪ 𝐷ଶ) connected?

Exercise:
Given 2-batch algo 𝒜ୠୟ୲ୡ୦ with

• Init time: 𝑂෨(𝑚)
• First update time: 𝑂෨(𝑑ଵ)
• Second update time: 𝑂෨(𝑑ଶ)

1. Show a dynamic algorithm with 𝑂෨(𝑚ଵ/ଷ) worst-case update time.
2. Generalize to the 𝑘-batch setting, get 𝑂෨(𝑚ଵ/(௞ାଵ)) worst-case update time

Remark:
• Most 2-batch algos generalize to the k-batch

setting. (not for 1-batch algos)
• For example, Today’s 1-batch algorithm

does not work in the 2-batch setting. Why?

Before Template 3:
Introduction to Vertex Sparsifiers
Extensively studied in both approximation and FPT (kernelization) communities.

Vertex Sparsifiers (aka Mimicking Networks)

Setting:
• Input: graph 𝐺 = 𝑉, 𝐸 , terminal set 𝑆 ⊆ 𝑉

• Output: graph 𝐻 s.t. 𝑆 ⊆ 𝑉(𝐻) and
• 𝐸 𝐻 ≈ |𝑆|
• 𝐻 preserves information in 𝐺 related to 𝑆. Write “𝐻 ≈ 𝐺 w.r.t. 𝑆”

• 𝐻 is called a sparsifier of 𝑮 w.r.t. 𝑺.

• Example: Vertex sparsifier for shortest paths [CGHPS’20] based on [TZ’05]

• For any 𝑘, there exists 𝐻 s.t.
• 𝐸 𝐻 = 𝑂(𝑆 𝑛ଵ/௞)
• For each 𝑢, 𝑣 ∈ 𝑆, distு 𝑢, 𝑣 ≈ distீ 𝑢, 𝑣 up to 𝑂 𝑘 factor.

• Today: Vertex sparsifier for minmax paths

Minmax paths and Minimum Spanning Trees (MST)

• (𝑠, 𝑡)-minmax path 𝑃∗ has minimum max
௘∈௉∗

𝑤(𝑒) (𝑤(𝑒) is weight of edge 𝑒)

• minmax 𝑠, 𝑡 ≔ max
௘∈௉∗

𝑤(𝑒)

• Key point: MST preserves all minmax paths
• 𝑇: MST of 𝐺.
• 𝑃்(𝑠, 𝑡): unique (𝑠, 𝑡)-path in 𝑇

• Claim: 𝑃்(𝑠, 𝑡) is (𝑠, 𝑡)-minmax path in 𝐺 for all 𝑠, 𝑡

• Proof: Otherwise, there is another (𝑠, 𝑡)-path 𝑃ᇱ s.t.
• 𝑒୫ୟ୶ ← heaviest edge in 𝑃்(𝑠, 𝑡)
• max

௘∈௉∗
𝑤(𝑒) < 𝑤(𝑒୫ୟ୶)

• So, there is 𝑒′ ∈ 𝑃′ s.t.
• 𝑇ᇱ = 𝑇 ∪ 𝑒ᇱ ∖ 𝑒୫ୟ୶ is a spanning tree
• but 𝑤 𝑇′ < 𝑤(𝑇). Contradiction.

Remember this.

Vertex sparsifier for minmax paths

Input: graph 𝐺 = 𝑉, 𝐸 , terminal set 𝑆 ⊆ 𝑉

Output: graph 𝐻
• 𝐸 𝐻 = 𝑂(𝑆)

• For all 𝑢, 𝑣 ∈ 𝑆, minmaxு 𝑢, 𝑣 = minmaxீ 𝑢, 𝑣 . (Write 𝑯 ≡𝐦𝐢𝐧𝐦𝐚𝐱 𝑮 w.r.t 𝑺)

Warming-up Algo:
• What if 𝑆 = 𝑢, 𝑣 ?

• Easy: 𝐻 ← { 𝑢, 𝑣 } where 𝑤ு 𝑢, 𝑣 ← minmaxீ(𝑢, 𝑣)

Vertex sparsifier for minmax paths

Input: graph 𝐺 = 𝑉, 𝐸 , terminal set 𝑆 ⊆ 𝑉
Output: 𝐻 where 𝑆 ⊆ 𝑉(𝐻)

• 𝐸 𝐻 = 𝑂(𝑆)
• For all 𝑢, 𝑣 ∈ 𝑆, minmaxு 𝑢, 𝑣 = minmaxீ 𝑢, 𝑣

Algo:
1. 𝑇 ← MST of 𝐺.
2. 𝑆ᇱ ← LCA_Closure்(𝑆).

• For all 𝑢, 𝑣 ∈ 𝑆ᇱ, 𝐿𝐶𝐴 𝑢, 𝑣 ∈ 𝑆′.
• Note that 𝑆ᇱ ≤ 2 𝑆 .

3. For each "adjacent" 𝑢, 𝑣 ∈ 𝑆′,
Add 𝑢, 𝑣 into 𝐻 where 𝑤ு 𝑢, 𝑣 ← max weight in 𝑃் 𝑢, 𝑣

Correctness: Exercise
Hint: (MST preserves all minmax paths + the warm-up case)
Time: 𝑂෨(𝑚) Size: 𝑂(𝑆)

Composability

Def: The similarity relation “≈” is composable if
1. 𝐻 ≈ 𝐺 w.r.t. 𝑆

2. 𝑒 = (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑆,
Then, 𝐻 + 𝑒 ≈ 𝐺 + 𝑒 w.r.t. 𝑆

Lemma: The relation ≡𝐦𝐢𝐧𝐦𝐚𝐱 is composable.
Proof: Suppose 𝐻 ≡୫୧୬୫ୟ୶ 𝐺 w.r.t. 𝑆. For any (𝑠, 𝑡) where 𝑠, 𝑡 ∈ 𝑆,

minmaxீା௘ 𝑠, 𝑡 = min ൞

minmaxீ 𝑠, 𝑡

max{minmaxீ 𝑠, 𝑢 , 𝑤 𝑢, 𝑣 , minmaxீ 𝑣, 𝑡 }

max{minmaxீ 𝑠, 𝑣 , 𝑤 𝑣, 𝑢 , minmaxீ 𝑢, 𝑡 }

Composability

Def: The similarity relation “≈” is composable if
1. 𝐻 ≈ 𝐺 w.r.t. 𝑆

2. 𝑒 = (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑆,
Then, 𝐻 + 𝑒 ≈ 𝐺 + 𝑒 w.r.t. 𝑆

Lemma: The relation ≡𝐦𝐢𝐧𝐦𝐚𝐱 is composable.
Proof: Suppose 𝐻 ≡୫୧୬୫ୟ୶ 𝐺 w.r.t. 𝑆. For any (𝑠, 𝑡) where 𝑠, 𝑡 ∈ 𝑆,

minmaxீା௘ 𝑠, 𝑡 = min ൞

minmaxீ 𝑠, 𝑡

max{minmaxீ 𝑠, 𝑢 , 𝑤 𝑢, 𝑣 , minmaxீ 𝑣, 𝑡 }

max{minmaxீ 𝑠, 𝑣 , 𝑤 𝑣, 𝑢 , minmaxீ 𝑢, 𝑡 }

= min ൞

minmaxு 𝑠, 𝑡

max{minmaxு 𝑠, 𝑢 , 𝑤 𝑢, 𝑣 , minmaxு 𝑣, 𝑡 }

max{minmaxு 𝑠, 𝑣 , 𝑤 𝑣, 𝑢 , minmaxு 𝑢, 𝑡 }

= minmaxுା௘ 𝑠, 𝑡

Template 3:
Vertex Sparsifiers

Used in
• The template is explicit in [GHP’17, CGHPS’20]
• Offline dynamic algo for MST [Epp’94] and O(1)-connectivity [PSS’19, CDLKPPSV’20]. Non-offline version [NSW’17, JS’20]
• Dynamic effective resistance [GHP’18, DGGP’19]
• Modern max flows algorithms

Plan

1. Show reduction
• Given a fast algorithm for vertex sparsifier for minmax paths,
• Obtain offline dynamic algorithm for minmax paths
The template work for any problem.

2. Discuss how to get non-offline dynamic algorithms
3. Open problems (a lot of growth, promising)

Anyway, what are offline algorithms?

Offline fully dynamic minmax paths

• Assume for notational convenience:
• At step 𝑖, we are given both edge insert/delete (𝑢௜, 𝑣௜) AND query (𝑠௜, 𝑡௜)

• Input: whole sequence of 𝑚 updates/queries (Think 𝐸 𝐺௜ ≤ 𝑚 for all steps 𝑖)

• “Offline”: get whole sequence, not revealed to us one by one like before

• Output: for all 𝑖, compute minmaxீ೔
𝑠௜, 𝑡௜

• Trivial: 𝑂(𝑚ଶ) time.
• Today: 𝑂෨(𝑚ଵ.ହ) time… then 𝑂෨(𝑚) time (Think 𝑂෨(1) per update/query)

Offline algo: high-level idea

• Our goal:
• For all 𝑖, compute 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜}. Note 𝐸 𝐻௜ = 𝑂(1).

• Then:
• For all 𝑖, compute minmaxீ೔

𝑠௜, 𝑡௜ = minmaxு೔
𝑠௜, 𝑡௜ in 𝑂 𝑚 total time.

𝒎 = 𝟗 steps
𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ 𝐺ହ 𝐺଺ 𝐺଻ 𝐺଼ 𝐺ଽ

𝐻ଵ 𝐻ଶ 𝐻ଷ 𝐻ସ 𝐻ହ 𝐻଺ 𝐻଻ 𝐻଼ 𝐻ଽ

Compute all minmaxீ೔
𝑠௜, 𝑡௜ in 𝑂 𝑚 time

𝑂෨(𝑚) time each 𝑶෩(𝒎𝟐) time
Trivial way
to compute 𝑯𝒊

Offline algo: high-level idea

• Our goal:
• For all 𝑖, compute 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜}. Note 𝐸 𝐻௜ = 𝑂(1).

• Then:
• For all 𝑖, compute minmaxீ೔

𝑠௜, 𝑡௜ = minmaxு೔
𝑠௜, 𝑡௜ in 𝑂 𝑚 total time.

𝒎 = 𝟗 steps
𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ 𝐺ହ 𝐺଺ 𝐺଻ 𝐺଼ 𝐺ଽ

𝐻ଵ 𝐻ଶ 𝐻ଷ 𝐻ସ 𝐻ହ 𝐻଺ 𝐻଻ 𝐻଼ 𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨(𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time
Less trivial way
to compute 𝑯𝒊 𝑚

𝑚
intervals

Let’s see the details…

Divide update sequence into intervals ℐ = 𝐼ଵ, … , 𝐼 ௠ of length 𝑚. Fix 𝐼 ∈ ℐ.
• Interval of edge 𝑒: 𝐼௘ = [insert_time 𝑒 , delete_time 𝑒]

• Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘} 𝐸ூ
௣

≈ 𝑚

• Updated edges in 𝐼: 𝐸ூ
௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼} 𝐸ூ

௨ ≈ 𝑚

• Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ
௨ ∪ 𝑉(𝑄ூ) where 𝑄ூ =∪௜∈ூ {𝑠௜, 𝑡௜}. 𝑆ூ ≈ 𝑚

• Think: 𝑆ூ are endpoints of updates/queries during interval 𝐼.

Set up notations

𝒎 steps
𝐼ଵ of size 𝑚 𝐼 ௠ of size 𝑚𝐼ଶ of size 𝑚

….

𝑰𝒆𝟏insert_time 𝑒ଵ delete_time 𝑒ଵ

𝑬𝑰𝟐

𝒖

𝑬𝑰𝟐

𝒑

𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ,
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ

2. For each 𝑖 ∈ 𝐼

• 𝐻௜
୍୬ୱୣ୰୲ ← 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜}

𝒎 steps
𝐼ଵ of size 𝑚 𝐼 ௠ of size 𝑚𝐼ଶ of size 𝑚

….

𝑬𝑰𝟐

𝒖

𝑬𝑰𝟐

𝒑

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)

𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ,
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ

2. For each 𝑖 ∈ 𝐼

• 𝐻௜
୍୬ୱୣ୰୲ ← 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜}

Correctness: Want to show 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} for each 𝑖

• 𝐻௜
୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. 𝑆ூ

• 𝐻ூ
୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ

௣ w.r.t. 𝑆ூ from Step 1
• 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

≡ 𝐸ூ
௣

∪ 𝐺௜ ∖ 𝐸ூ
௣ w.r.t. 𝑆ூ by composability

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)

𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ,
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ

2. For each 𝑖 ∈ 𝐼

• 𝐻௜
୍୬ୱୣ୰୲ ← 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜}

Correctness:
• 𝐻௜

୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. 𝑆ூ

• 𝐻௜
୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} as 𝑆ூ ⊇ {𝑠௜, 𝑡௜}.

• 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲ w.r.t. {𝑠௜, 𝑡௜} by Step 2.2

• 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} (DONE)

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)

𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ, 𝑚 loops
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ 𝑂෨(𝑚) time

2. For each 𝑖 ∈ 𝐼 𝑚 total loops
• 𝐻௜

୍୬ୱୣ୰୲ ← 𝐻ூ
୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ

௣
𝑂෨(𝑚) time

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜} 𝑂෨(𝑚) time

Correctness:
• 𝐻௜

୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. 𝑆ூ

• 𝐻௜
୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} as 𝑆ூ ⊇ {𝑠௜, 𝑡௜}.

• 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲ w.r.t. {𝑠௜, 𝑡௜} by Step 2.2

• 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} (DONE)

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)

𝑂෨(𝑚ଵ.ହ)

Summary: 𝑂෨(𝑚ଵ.ହ)−time offline algo

• For all 𝑖, obtain 𝐻௜ ≡ 𝐺௜ w.r.t. 𝑠௜, 𝑡௜ in 𝑂෨(𝑚ଵ.ହ) time

𝒎 = 𝟗 steps
𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ 𝐺ହ 𝐺଺ 𝐺଻ 𝐺଼ 𝐺ଽ

𝐻ଵ 𝐻ଶ 𝐻ଷ 𝐻ସ 𝐻ହ 𝐻଺ 𝐻଻ 𝐻଼ 𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨(𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time𝑚

𝑚
intervals

Then, compute all minmaxீ೔
𝑠௜, 𝑡௜ in 𝑂 𝑚 time

𝑂෨(𝑚)−time offline algo

• 2 levels of sparsifiers 𝑂෨(𝑚ଵ.ହ)-time algorithm

• 𝑘 levels of sparsifiers𝑂෨(𝑚ଵାଵ/௞)-time algorithm
• Note: If sparsifiers have 𝛼-approx., get 𝛼௞-approx. offline dynamic algorithms.

• For us, 𝛼 = 1 (exact). Setting 𝑘 ← log 𝑛, get 𝑂෨ 𝑚 time

𝒎 = 𝟗 steps
𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ 𝐺ହ 𝐺଺ 𝐺଻ 𝐺଼ 𝐺ଽ

𝐻ଵ 𝐻ଶ 𝐻ଷ 𝐻ସ 𝐻ହ 𝐻଺ 𝐻଻ 𝐻଼ 𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨(𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time𝑚

𝑚
intervals

• We saw a black-box transformation:

Fast vertex-sparsifier algorithms  Fast offline fully dynamic algorithms

• Can get non-offline dynamic algorithm too (very similar, omitted).
• If, additionally, vertex-sparsifier algorithm can…

If handle add-terminal operation  Fast incremental algorithms

If handle add-terminal & delete operations  Fast fully dynamic algorithms

Conclude: dynamic algo from vertex sparsifier

Many sparsifier algorithms
naturally support add-terminals

Open problems in Dynamic vertex sparsifiers

TimeSizeApproxSettingProblems

𝑛௢(ଵ)|𝑆|1Fully dyn [Epp’94] [NSW’17]Minmax paths

𝑂෨(𝑛ଵ/௞)𝑆 𝑛ଵ/௞𝑘Incremental [TZ’05] [CGHPS’20]Shortest paths

𝑂෨(1/𝛽)𝛽𝑛 + 𝑆log 𝑛Fully dyn [CGHPS’20]

Poly𝑆 𝑐ଷ1Static [Liu’23]𝒄-connectivity

𝑛௢ ଵ 𝑐ை(௖)𝑆 𝑐ை(௖)1Fully dyn [CDLKPPSV’20] [JS’20]

Poly |𝑆|log |𝑆|StaticMax flow (multicommodity)

𝑂෨(1)|𝑆|logସ 𝑛Incremental [RST’14] [CGHPS’20]

𝑛௢(ଵ)|𝑆|𝑛௢(ଵ)Fully dyn unweighted [GRST’21]

𝑂෨(1/𝛽)𝛽𝑛 + 𝑆polylog 𝑛Fully dyn [CGHPS’20]

𝑂෨(𝑚)|𝑆|1 + 𝜖Static [KS’16] [DKPRS’16]Effective resistance

𝑂෨(1/𝛽ଶ)𝛽𝑚 + |𝑆|1 + 𝜖Fully dyn [DGGP’19] [BGJLLPS’21]

𝑘𝑛௢(ଵ)𝑚/𝑘log 𝑛Fully dyn [CKLPPS’22]Low stretch trees

Promising and rich area. Every red highlight below shows that some aspect might be improved.

*omit polylog(n) in size

Conclusion

You have learned

• 3 templates for designing dynamic graph algorithms
1. Rebuild in the background
2. Batching
3. Vertex sparsifiers

• Along the way, many terminology in the area
• worst-case vs. amortized update time
• fully dynamic vs. partially dynamic (incremental/decremental)
• one-batch algorithms (a.k.a. sensitivity oracles, emergency algorithms)
• offline dynamic algorithms

Template 1: Rebuild in the background

CorrectCorrectCorrect

Correct Correct Correct

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4
2𝑡௨𝑡௨

𝒜ଵ
ᇱᇱ

𝒜ଶ
ᇱᇱ

update time

update time

Template 2: Batching

One-batch algorithms + rebuild in the background

Dynamic algorithms

Often easy to
design

It works for 𝑘-batch algorithms too [NSW’17] [BBGNSSS’22] [JS’22]

Template 3: Vertex sparsifiers

𝒎 = 𝟗 steps
𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ 𝐺ହ 𝐺଺ 𝐺଻ 𝐺଼ 𝐺ଽ

𝐻ଵ 𝐻ଶ 𝐻ଷ 𝐻ସ 𝐻ହ 𝐻଺ 𝐻଻ 𝐻଼ 𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨(𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time𝑚

𝑚
intervals

Learn more templates

1. (Recent and promising): Optimization methods for dynamic algos.
• Static solutions robust against update

(congestion balancing [BGS’20, ’21], entropy-regularized solutions [JJST’22])

• Dynamic Multiplicative Weight Update [Gupta’14] [BKS’22] [BBLS’23]

• Dynamic Interior Point Methods [BLS’22]

2. Given incremental algo  get offline fully dynamic algo [PR’22]

3. Given decremental algo  get fully dynamic algo
• Problem-specific: Connectivity, MST, APSP

4. Any “decomposable” problems  get fully dynamic algo [Overmars’ book]

• E.g. dynamic range searching, quad-tree, other geometric objects

Other Generic Techniques in Dynamic Graphs

• Expander decomposition
• Used for dynamic connectivity, shortest paths in both undirected and directed graphs
• My tutorial: Part 1 and 2
• My course on using expanders for fast algorithm (updated version in 1-2 months!)

• Edge-degree constrained subgraph (EDCS):
• key objects for dynamic matching
• Aaron’s tutorial

• Randomized Greedy:
• General approach for both dynamic maximal matching and maximal independent set
• Soheil’s tutorial

Thank you!

