

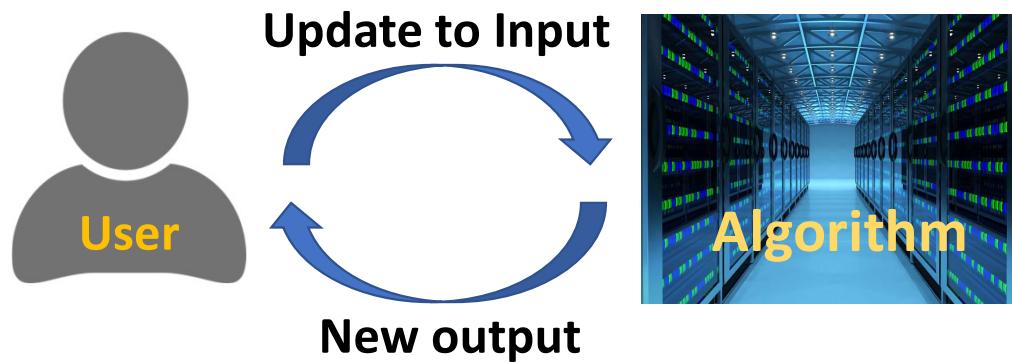
Design Templates of Dynamic Graph Algorithms

Thatchaphol Saranurak

University of Michigan

December 8, 2025

Dynamic Algorithms: Algorithms that Interact



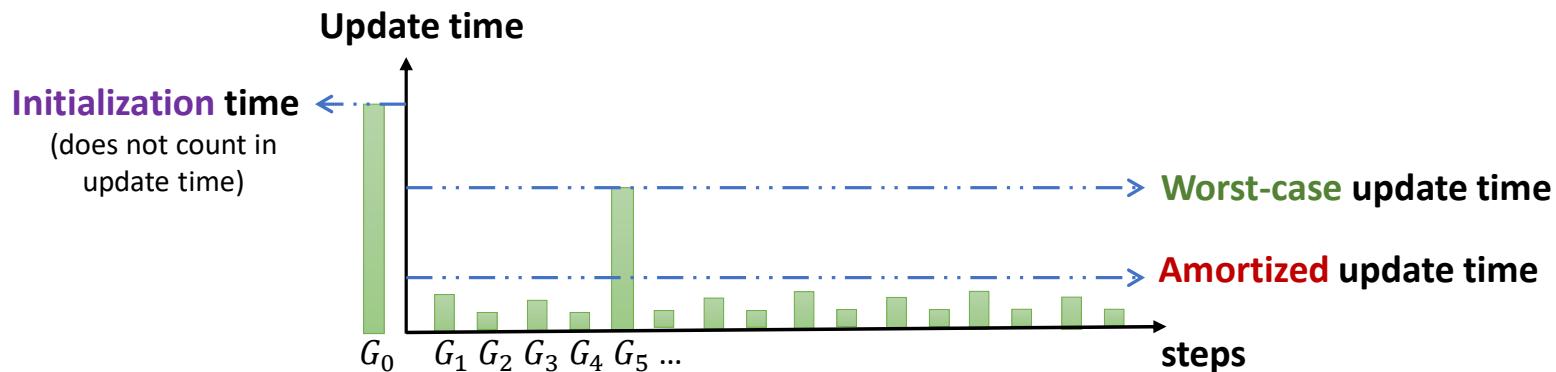
Dynamic graph algorithms

Setting:

1. Given an input graph G_0 , preprocess it.
2. Then, for each time **step**,
 - Given an update or a query (generated **online/on the fly**),
 - update the data structure and/or answer the query.
- Update are often **insertions** and **deletions** of an edge (a vertex sometimes)
- Example of tasks
 - **Answer queries:** Is G connected? what is (s, t) -distance?
 - **Maintain objects:** minimum spanning tree, maximal matching, etc.

Terminology

- G_i = the graph after i steps
- **Update sequence:** the sequence of updates/queries
- **Update time:** time needed at each step.
 - T **worst-case** update time: **every** step requires $\leq T$ time.
 - T **amortized** update time: after k steps (for large enough k), the **total time** is $\leq kT$
- **Preprocessing/initialization time:** time to process G_0



Fully dynamic vs. Partially Dynamic

- **Fully dynamic** algorithms handle both **insertions** and **deletions**
- **Partially Dynamic**
 - **incremental** algorithms handle only **insertions**
 - **decremental** algorithms handle only **deletions**

In this talk, you will learn...

3 templates for designing dynamic graph algorithms

1. Rebuild in the background
2. Batching
3. Vertex sparsifiers

All templates are general.
They work for every problem.
Only Template 3 is specific to graphs.

For each template, I will give a complete proof
of a concrete algorithm.

Template 0 (warm-up): Rebuild

Fully dynamic $(1 + \epsilon)$ -approx. matching

- Def:

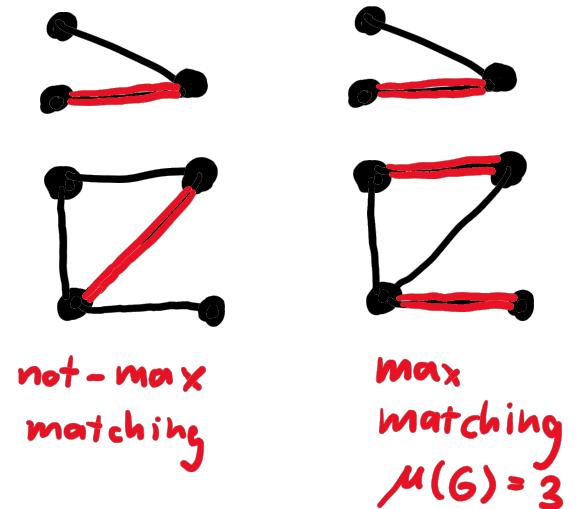
- **Matching** is a set of vertex-disjoint edges
- Given graph G , $\mu(G)$ = **size of maximum matching**

- Problem:

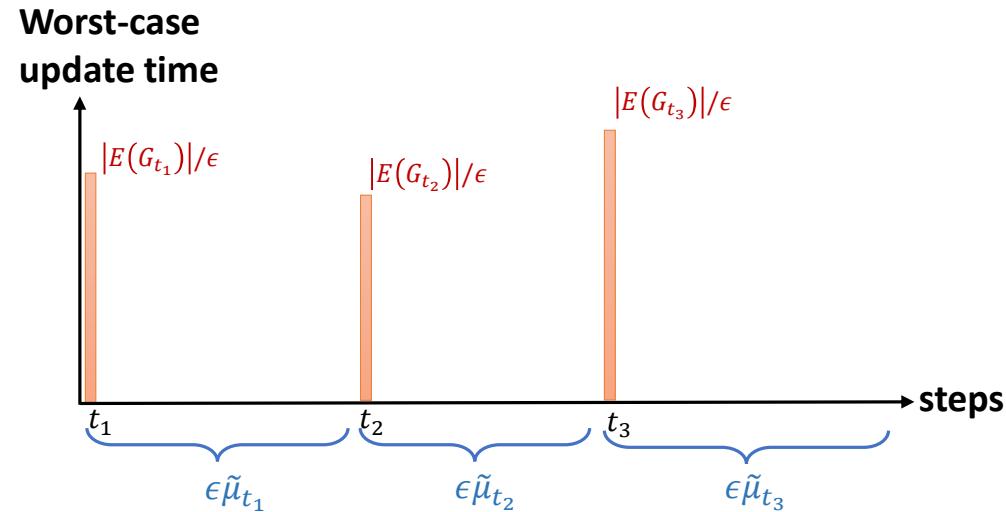
- Init: graph G with n vertices
- Then: **online** sequence of edge **insertions/deletions**
- **Goal:** maintain $(1 + \epsilon)$ -approx. of $\mu(G)$

- Algo:

- **Trivial:** $O(|E(G)|/\epsilon) = O(n^2/\epsilon)$ update time. (**recompute from scratch** after edge update)
- **Today:** $O(n/\epsilon^2)$ update time.



Algorithm



- Repeat:
 - **(Rebuild step):** $\tilde{\mu} \leftarrow (1 + \epsilon)$ -approx. of $\mu(G)$ computing from scratch
 - For the next $\epsilon \tilde{\mu}$ steps, just return $\tilde{\mu}$.
- **Correct:**
 - Each edge update may change the size of $\mu(G)$ by at most 1.
 - So, $\mu(G) = (1 \pm \epsilon)\tilde{\mu} \pm \epsilon \tilde{\mu}$ at all time.
 - That is, $\tilde{\mu}$ is always $(1 + O(\epsilon))$ -approx. of $\mu(G)$

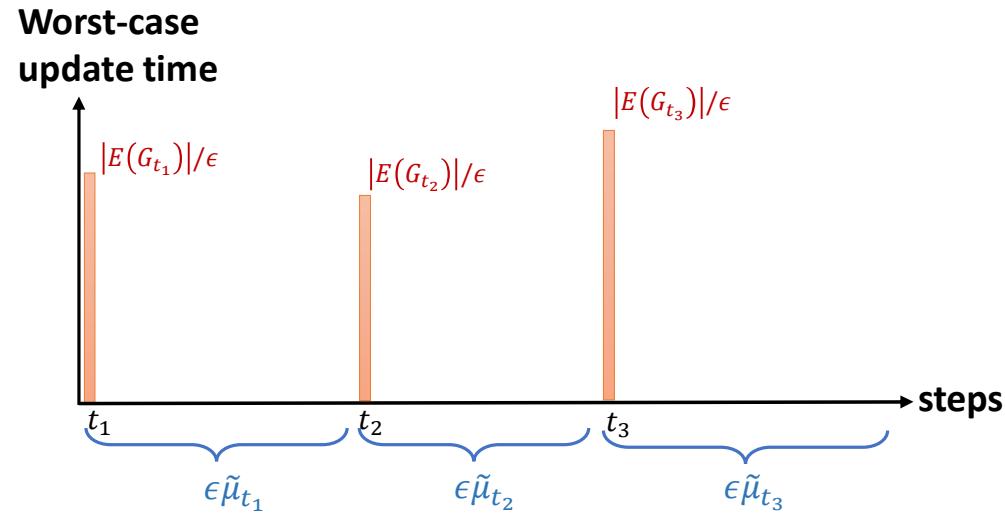
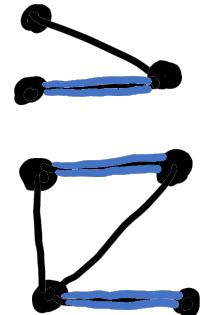
Analysis

- **Update time:**

- $O\left(\frac{|E(G_t)|/\epsilon}{\epsilon\mu(G_t)}\right)$ amortized update time.
- $= O(n/\epsilon^2)$. Why?

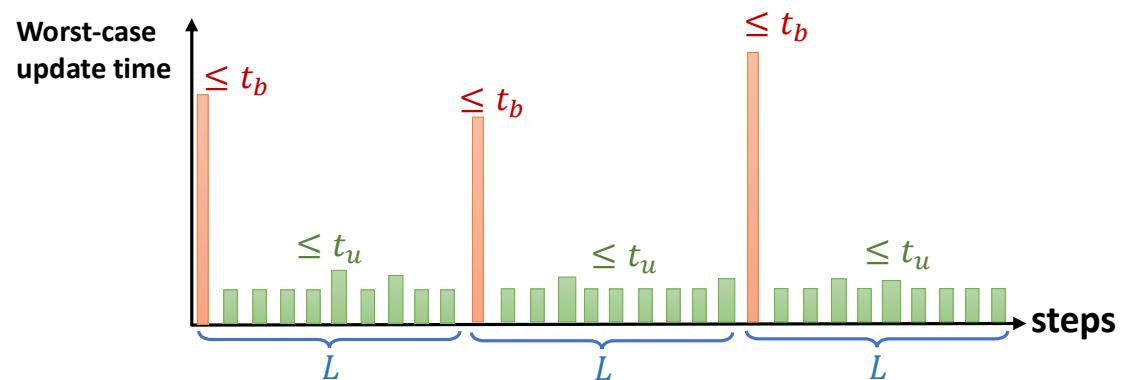
- **Claim:** $|E(G)| \leq \mu(G) \cdot 2n$

- Let M^* be a maximum matching $|M^*| = \mu(G)$
- **Observe:** every edge is incident to M^* (otherwise M^* is not max).
- Deleting an edge $e = (u, v)$ in M^* removes at most $\deg(u) + \deg(v) \leq 2n$ edges in G
- Repeat $\mu(G)$ times, no edge left.



Template 0: Rebuild

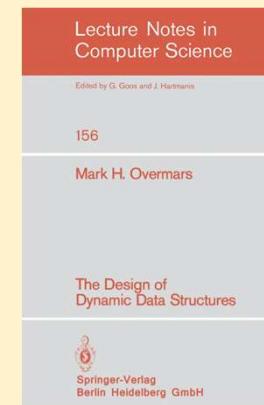
- Given algo \mathcal{A}
 - can handle L updates
 - t_b = rebuild time
 - t_u = worst-case update time
- Obtain algo \mathcal{A}'
 - can handle infinite updates
 - $O(\frac{t_b}{L} + t_u)$ **amortized** update time
- In our case, fully dynamic $(1 + \epsilon)$ -matching with $O(n/\epsilon^2)$ **amortized** update time
 - $L = \Theta(\epsilon\mu(G))$, $t_b = O(\frac{E(G)}{\epsilon})$, $t_u = O(1)$
- **Next:** worst-case update time instead



Template 1: Rebuild in the Background

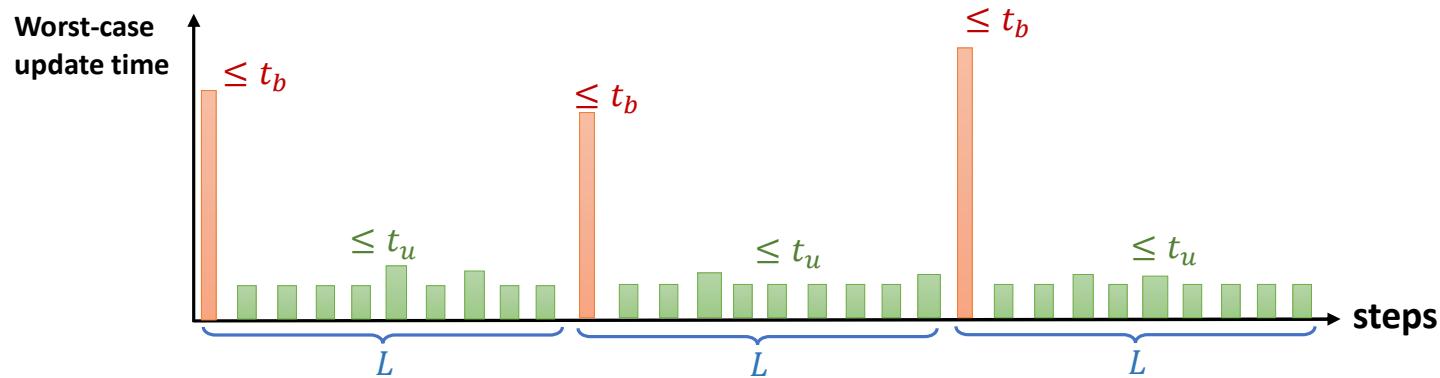
Overmars'83 “Global Rebuilding”

Used in many many papers.



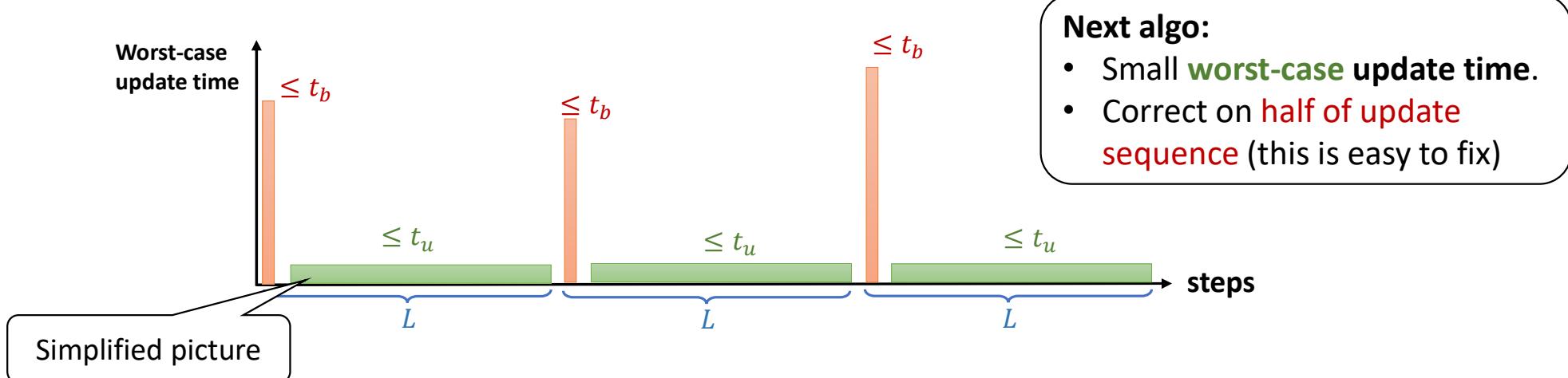
Recall

- Given algo \mathcal{A}
 - can handle L updates
 - t_b = rebuild time
 - t_u = worst-case update time
- algo \mathcal{A}' with $O\left(\frac{t_b}{L} + t_u\right)$ amortized update time



Recall

- Given algo \mathcal{A}
 - can handle L updates
 - t_b = rebuild time
 - t_u = worst-case update time
- algo \mathcal{A}' with $O\left(\frac{t_b}{L} + t_u\right)$ amortized update time



Algorithm \mathcal{A}'' : $O\left(\frac{t_b}{L} + t_u\right)$ worst-case update time

Divide each phase of L steps from $[t_0, t_0 + L]$ into 3 periods

1. **(Rebuild)** first $L/4$ steps:

- Rebuild data structure for G_{t_0} but **distribute the work evenly on the period**.
- Ignore updates.

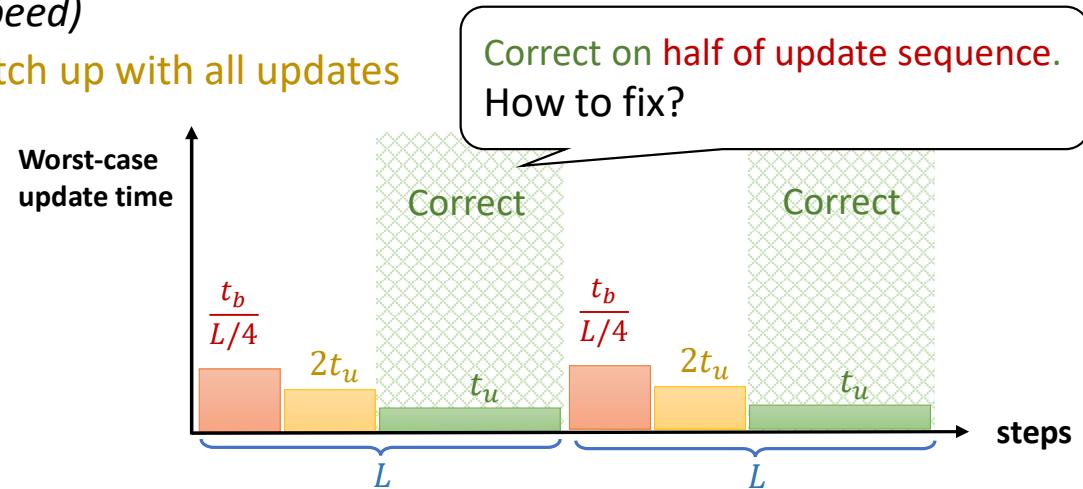
2. **(Catch-up)** next $L/4$ steps:

- Each step, feed two updates. (*Double speed*)
- **Observe:** At the end, data structures **catch up with all updates**

3. **(Active)** last $L/2$ steps:

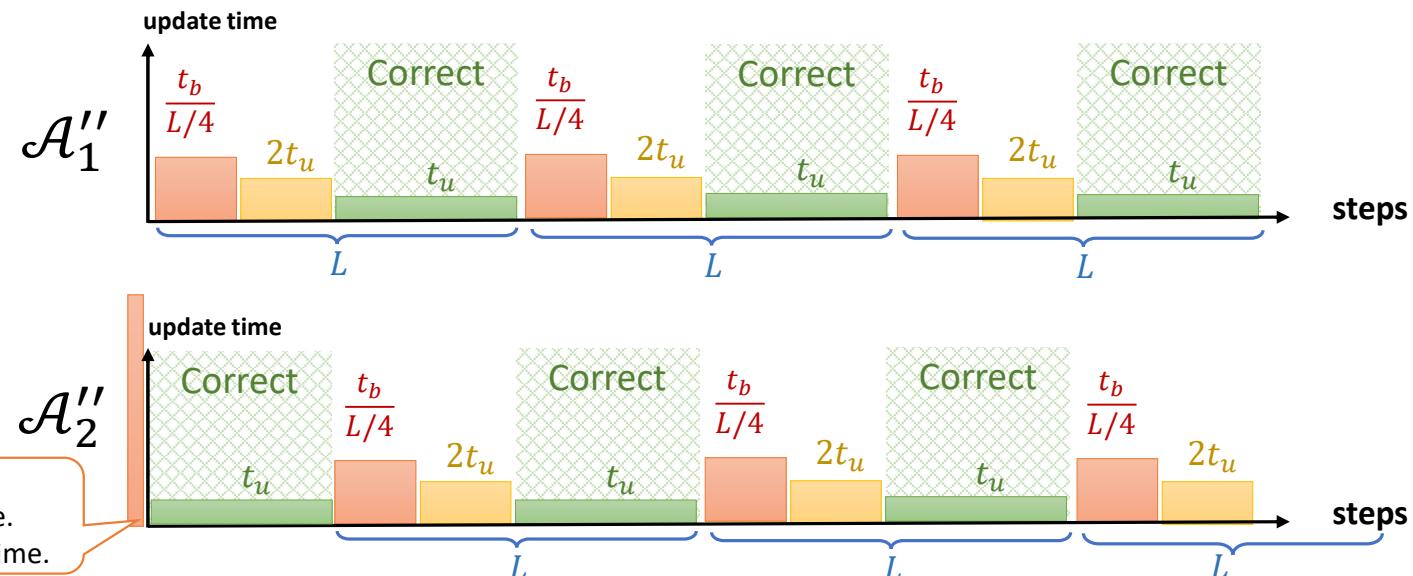
- Feed update normally.
- Get **correct answers** in this period

Worst-case update time: $O\left(\frac{t_b}{L} + t_u\right)$



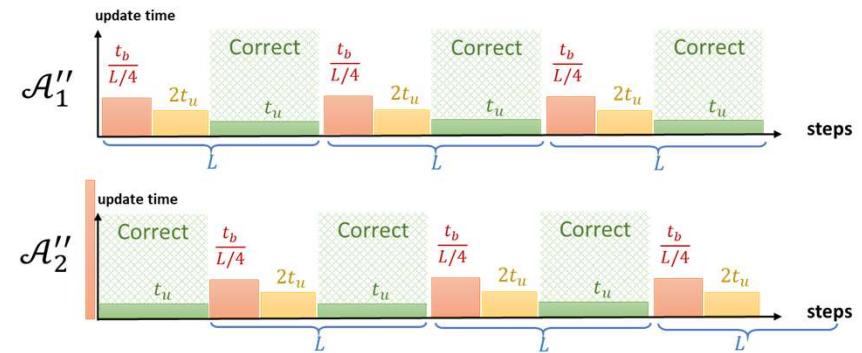
Correct answers at all steps

- Make two instances \mathcal{A}''_1 and \mathcal{A}''_2 . (Increase update time by factor 2.)
 - Schedule their periods so that...
 - At every step, one of them is correct.



Conclude: Rebuild in the background

- Given algo \mathcal{A}
 - can handle L updates
 - t_b = rebuild time
 - t_u = worst-case update time
- Obtain algo \mathcal{A}''
 - $O(\frac{t_b}{L} + t_u)$ worst-case update time



- **Conclude:**
 - fully dynamic $(1 + \epsilon)$ -matching with $O(n/\epsilon^2)$ worst-case update time.
 - Exercise: $O(\deg_{\max}(G)/\epsilon^2)$ worst-case update time Hint: $|E(G)| \leq \mu(G) \cdot 2\deg_{\max}(G)$

Template 2: Batching

Used in

- Dynamic MST [[HK'01](#)]
- Dynamic APSP with worst-case update time [[Thorup'05](#)] [[ACK'17](#)] [[PW'20](#)]
- Expander pruning with worst-case update time [[NSW'17](#)] [[BBGNSSS'22](#)] [[JS'22](#)]
- Dynamic DFS [[BCCK'16](#)]
- Let me know more

Decremental connectivity

- Problem:
 - Init: graph G with n vertices and m edges
 - Then: **online sequence** of edge **deletions only**
 - **Maintain:** is G connected?
- Algo:
 - Trivial: $O(m)$ worst-case update time. (BFS, for example)
 - Today: $\tilde{O}(m^{2/3})$ worst-case update time.

One-batch decremental connectivity

Often easier
to design

- Setting for one-batch algorithms
 - Init: graph G
 - Update: a **single batch D of d edge deletions.**
 - Answer: is $G' = G \setminus D$ connected?
- **Will show later:** one-batch algo $\mathcal{A}_{\text{batch}}$ with
 - Init time: $\tilde{O}(m)$
 - Update time: $\tilde{O}(d^2)$
- **Next:** how to get $O(m^{2/3})$ worst-case update time using $\mathcal{A}_{\text{batch}}$

Reduction to one-batch algorithms

- **Simple idea:** to handle update sequence with *one-batch* algos $\mathcal{A}_{\text{batch}}$,
 - Given the i^{th} update u_i ,
feed the **batch of first i updates** (u_1, \dots, u_i) into $\mathcal{A}_{\text{batch}}$ (using $\tilde{O}(i^2)$ time, for us)
- Obtain algo \mathcal{A} that
 - can handle L updates
 - rebuild time: $t_b = \tilde{O}(m)$
 - update time: $t_u = \tilde{O}(L^2)$
- Get algo \mathcal{A}' with $\tilde{O}(\frac{m}{L} + L^2) = \tilde{O}(m^{2/3})$ worst-case update time
 - by choosing $L = m^{1/3}$

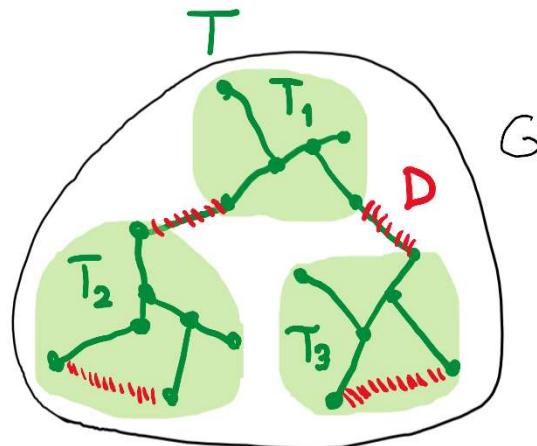
Recall:

Given algo \mathcal{A}
can handle L updates
 t_b = rebuild time
 t_u = worst-case update time
Obtain algo \mathcal{A}''
 $O(\frac{t_b}{L} + t_u)$ worst-case update time

Remain to show $\mathcal{A}_{\text{batch}} \dots$

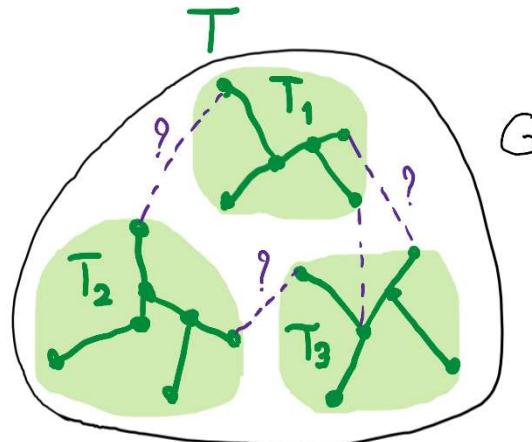
Ideas of one-batch algo $\mathcal{A}_{\text{batch}}$

- **Init:** $T \leftarrow$ spanning tree of G
- **Update:** given a set D of d edge deletions,
 1. $T_1, \dots, T_{d'} \leftarrow$ connected components of $T \setminus D$. ($d' \leq d + 1$)
 2. Sufficient: find a non-tree-edge between T_i and T_j , if exists, for $i, j \in [d']$



Ideas of one-batch algo $\mathcal{A}_{\text{batch}}$

- **Init:** $T \leftarrow$ spanning tree of G
- **Update:** given a set D of d edge deletions,
 1. $T_1, \dots, T_{d'} \leftarrow$ connected components of $T \setminus D$. ($d' \leq d + 1$)
 2. Sufficient: find a non-tree-edge between T_i and T_j , if exists, for $i, j \in [d']$

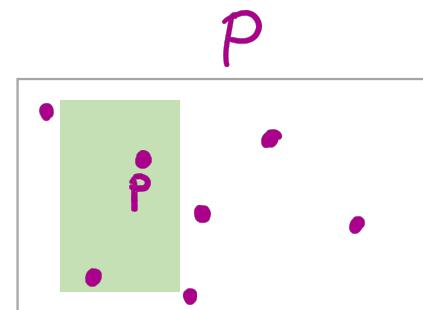
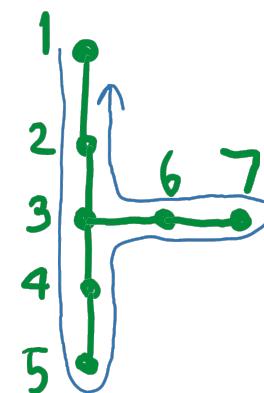


Next:

- show how to find these edges
- Need two tools:
 - Euler-tour
 - 2d-range query

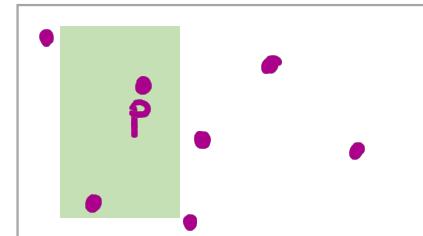
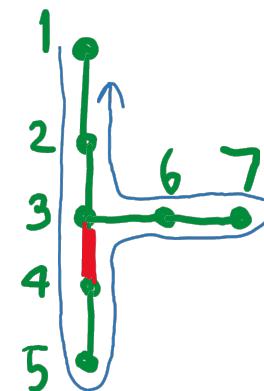
Basic tools for one-batch algo $\mathcal{A}_{\text{batch}}$

- 2d-range query: P is a set of points in 2d.
 1. **Update**: Insert/delete a point in P in $\tilde{O}(1)$ time
 2. **Query**: Given rectangle $I_x \times I_y$, return a point $p \in P \cap (I_x \times I_y)$ in $\tilde{O}(1)$ time
- Euler-tour:
 - Represent any tree T as a path.
 - See example:
 - Euler tour of T is $\text{Eu}(T) = (1,2,3,4,5,4,3,6,7,6,3,2)$
 - Each edge in T corresponds to 2 edges in $\text{Eu}(T)$



Basic tools for one-batch algo $\mathcal{A}_{\text{batch}}$

- 2d-range query: P is a set of points in 2d.
 1. **Update**: Insert/delete a point in P in $\tilde{O}(1)$ time
 2. **Query**: Given rectangle $I_x \times I_y$, return a point $p \in P \cap (I_x \times I_y)$ in $\tilde{O}(1)$ time
- Euler-tour:
 - Represent any tree T as a path.
 - See example:
 - Euler tour of T is $\text{Eu}(T) = (1,2,3,4,5,4,3,6,7,6,3,2)$
 - Each edge in T corresponds to 2 edges in $\text{Eu}(T)$



One-batch algo $\mathcal{A}_{\text{batch}}$

- **Init:**

$\tilde{O}(m)$ time

1. $T \leftarrow$ spanning tree of G
2. $\text{Eu}(T) \leftarrow$ Euler-tour of T
3. For each **non-tree edge** (u, v) ,
add $(\text{minrank}_{\text{Eu}(T)}(u), \text{minrank}_{\text{Eu}(T)}(v))$ to set P

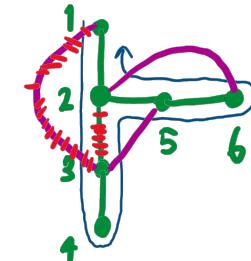
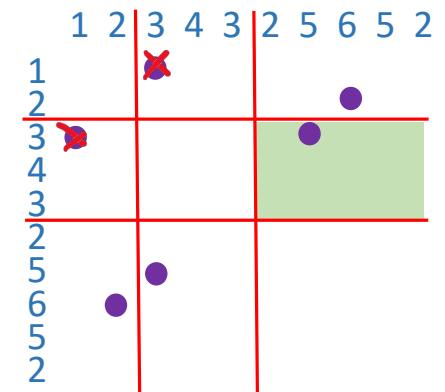
- **Update:** given a set D of d edge deletions,

$\tilde{O}(d)$ time

1. Delete points in P corresponding to **deleted non-tree edges**
2. $I_1, \dots, I_{d''} \leftarrow$ intervals of $\text{Eu}(T)$ after **deleting tree edges**. $d'' = O(d)$

$\tilde{O}(d^2)$ time

3. Query $I_i \times I_j$ to for all $i, j \in [d'']$
→ Find a **non-tree-edge** between T_i and T_j for all $i, j \in [d']$



Conclude: dynamic algo from one-batch algo

- **Get:** one-batch algo $\mathcal{A}_{\text{batch}}$ with
 - Init time: $\tilde{O}(m)$
 - Update time: $\tilde{O}(d^2)$
- **By previous reduction:** from $\mathcal{A}_{\text{batch}}$, we get
 - Decremental connectivity algorithm with $O(m^{2/3})$ worst-case update time

Conclude: dynamic algo from one-batch algo

- **If we have**: one-batch algo $\mathcal{A}_{\text{batch}}$ with
 - Init time: $\tilde{O}(m)$
 - Update time: $\tilde{O}(\textcolor{red}{d})$
- **By previous reduction**: from $\mathcal{A}_{\text{batch}}$, we **would get**
 - Decremental connectivity algorithm with $O(\textcolor{red}{m}^{1/2})$ update time

Exercise

- Setting for 2-batch algorithms:

- Init: graph G
- First update: a batch D_1 of d_1 edge deletions.
- Second update: a batch D_2 of d_2 edge deletions.
- Answer: is $G' = G \setminus (D_1 \cup D_2)$ connected?

Exercise:

Given 2-batch algo $\mathcal{A}_{\text{batch}}$ with

- Init time: $\tilde{O}(m)$
- First update time: $\tilde{O}(d_1)$
- Second update time: $\tilde{O}(d_2)$

1. Show a dynamic algorithm with $\tilde{O}(m^{1/3})$ worst-case update time.
2. Generalize to the k -batch setting, get $\tilde{O}(m^{1/(k+1)})$ worst-case update time

Remark:

- Most **2-batch** algos generalize to the **k -batch** setting. (not for 1-batch algos)
- For example, Today's 1-batch algorithm does not work in the 2-batch setting. Why?

Before Template 3: Introduction to Vertex Sparsifiers

Extensively studied in both approximation and FPT (kernelization) communities.

Vertex Sparsifiers (aka Mimicking Networks)

Setting:

- Input: graph $G = (V, E)$, terminal set $\mathcal{S} \subseteq V$
- Output: graph H s.t. $\mathcal{S} \subseteq V(H)$ and
 - $|E(H)| \approx |\mathcal{S}|$
 - H preserves information in G related to \mathcal{S} . Write " $H \approx G$ w.r.t. \mathcal{S} "
- H is called a **sparsifier of G w.r.t. \mathcal{S}** .
- Example: **Vertex sparsifier for shortest paths** [CGHPS'20] based on [TZ'05]
 - For any k , there exists H s.t.
 - $|E(H)| = O(|\mathcal{S}|n^{1/k})$
 - For each $u, v \in \mathcal{S}$, $\text{dist}_H(u, v) \approx \text{dist}_G(u, v)$ up to $O(k)$ factor.
- Today: **Vertex sparsifier for minmax paths**

Minmax paths and Minimum Spanning Trees (MST)

- (s, t) -minmax path P^* has minimum $\max_{e \in P^*} w(e)$ ($w(e)$ is weight of edge e)

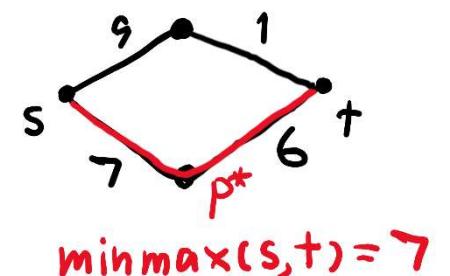
- $\text{minmax}(s, t) := \max_{e \in P^*} w(e)$

- Key point: **MST preserves all minmax paths**

- T : MST of G .

- $P_T(s, t)$: unique (s, t) -path in T

Remember this.



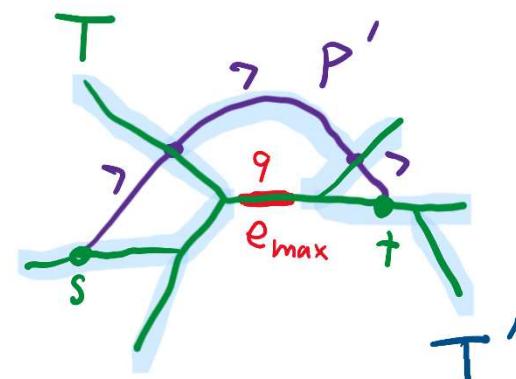
- Claim: $P_T(s, t)$ is (s, t) -minmax path in G for all s, t

- Proof: Otherwise, there is another (s, t) -path P' s.t.

- $e_{\max} \leftarrow$ heaviest edge in $P_T(s, t)$
- $\max_{e \in P^*} w(e) < w(e_{\max})$

- So, there is $e' \in P'$ s.t.

- $T' = T \cup e' \setminus e_{\max}$ is a spanning tree
- but $w(T') < w(T)$. **Contradiction.**



Vertex sparsifier for minmax paths

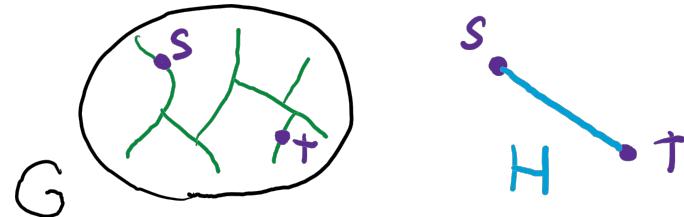
Input: graph $G = (V, E)$, terminal set $S \subseteq V$

Output: graph H

- $|E(H)| = O(|S|)$
- For all $u, v \in S$, $\text{minmax}_H(u, v) = \text{minmax}_G(u, v)$. (Write $H \equiv_{\text{minmax}} G$ w.r.t S)

Warming-up Algo:

- What if $S = \{u, v\}$?
- Easy: $H \leftarrow \{(u, v)\}$ where $w_H(u, v) \leftarrow \text{minmax}_G(u, v)$



Vertex sparsifier for minmax paths

Input: graph $G = (V, E)$, terminal set $S \subseteq V$

Output: H where $S \subseteq V(H)$

- $|E(H)| = O(|S|)$
- For all $u, v \in S$, $\text{minmax}_H(u, v) = \text{minmax}_G(u, v)$

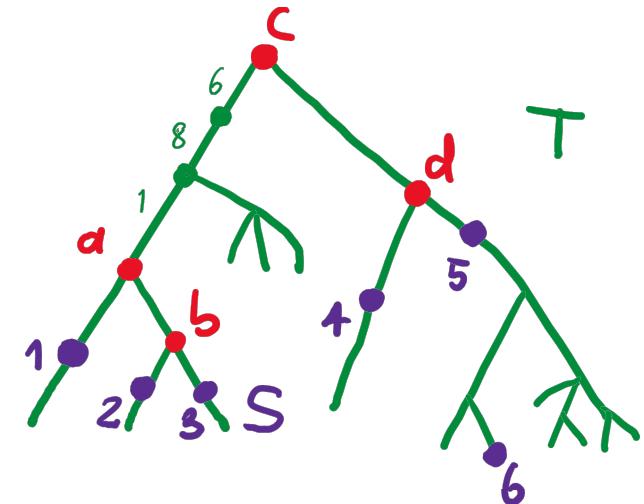
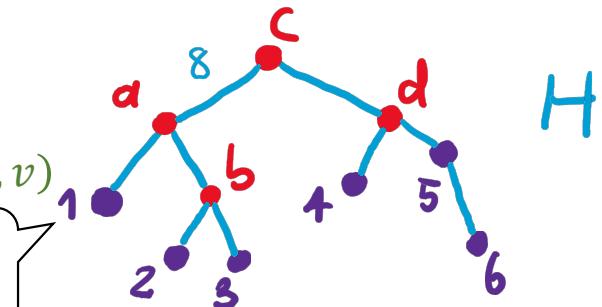
Algo:

1. $T \leftarrow \text{MST of } G$.
2. $S' \leftarrow \text{LCA}_\text{Closure}_T(S)$.
 - For all $u, v \in S'$, $\text{LCA}(u, v) \in S'$.
 - Note that $|S'| \leq 2|S|$.
3. For each "adjacent" $u, v \in S'$,
Add (u, v) into H where $w_H(u, v) \leftarrow \max$ weight in $P_T(u, v)$

Correctness: Exercise

Hint: (MST preserves all minmax paths + the warm-up case)

Time: $\tilde{O}(m)$ **Size:** $O(|S|)$

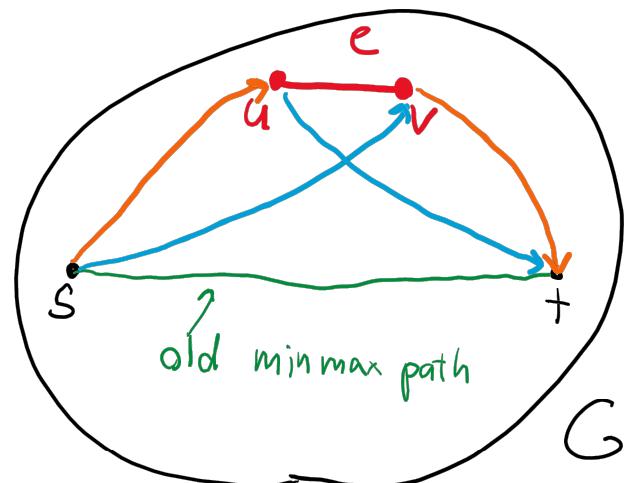


Composability

Def: The similarity relation “ \approx ” is **composable** if

1. $H \approx G$ w.r.t. S
2. $e = (u, v)$ where $u, v \in S$,

Then, $H + e \approx G + e$ w.r.t. S



Lemma: The relation \equiv_{minmax} is composable.

Proof: Suppose $H \equiv_{\text{minmax}} G$ w.r.t. S . For any $(s, t) \in S$,

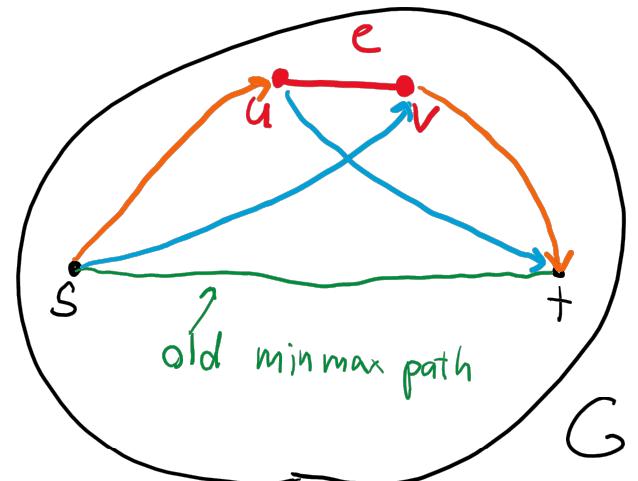
$$\text{minmax}_{G+e}(s, t) = \min \begin{cases} \text{minmax}_G(s, t) \\ \max\{\text{minmax}_G(s, u), w(u, v), \text{minmax}_G(v, t)\} \\ \max\{\text{minmax}_G(s, v), w(v, u), \text{minmax}_G(u, t)\} \end{cases}$$

Composability

Def: The similarity relation “ \approx ” is **composable** if

1. $H \approx G$ w.r.t. S
2. $e = (u, v)$ where $u, v \in S$,

Then, $H + e \approx G + e$ w.r.t. S



Lemma: The relation \equiv_{minmax} is composable.

Proof: Suppose $H \equiv_{\text{minmax}} G$ w.r.t. S . For any $(s, t) \in S$,

$$\text{minmax}_{G+e}(s, t) = \min \left\{ \begin{array}{l} \text{minmax}_G(s, t) \\ \max\{\text{minmax}_G(s, u), w(u, v), \text{minmax}_G(v, t)\} \\ \max\{\text{minmax}_G(s, v), w(v, u), \text{minmax}_G(u, t)\} \end{array} \right\} = \min \left\{ \begin{array}{l} \text{minmax}_H(s, t) \\ \max\{\text{minmax}_H(s, u), w(u, v), \text{minmax}_H(v, t)\} \\ \max\{\text{minmax}_H(s, v), w(v, u), \text{minmax}_H(u, t)\} \end{array} \right\} = \text{minmax}_{H+e}(s, t)$$

Template 3: Vertex Sparsifiers

Used in

- The template is explicit in [[GHP'17](#), [CGHPS'20](#)]
- Offline dynamic algo for MST [[Epp'94](#)] and O(1)-connectivity [[PSS'19](#), [CDLKPPSV'20](#)]. Non-offline version [[NSW'17](#), [JS'20](#)]
- Dynamic effective resistance [[GHP'18](#), [DGGP'19](#)]
- [Modern max flows algorithms](#)

Plan

1. Show reduction
 - Given a fast algorithm for vertex sparsifier for minmax paths,
 - Obtain **offline** dynamic algorithm for minmax paths

The template work for any problem.
2. Discuss how to get **non-offline** dynamic algorithms
3. Open problems (a lot of growth, promising)

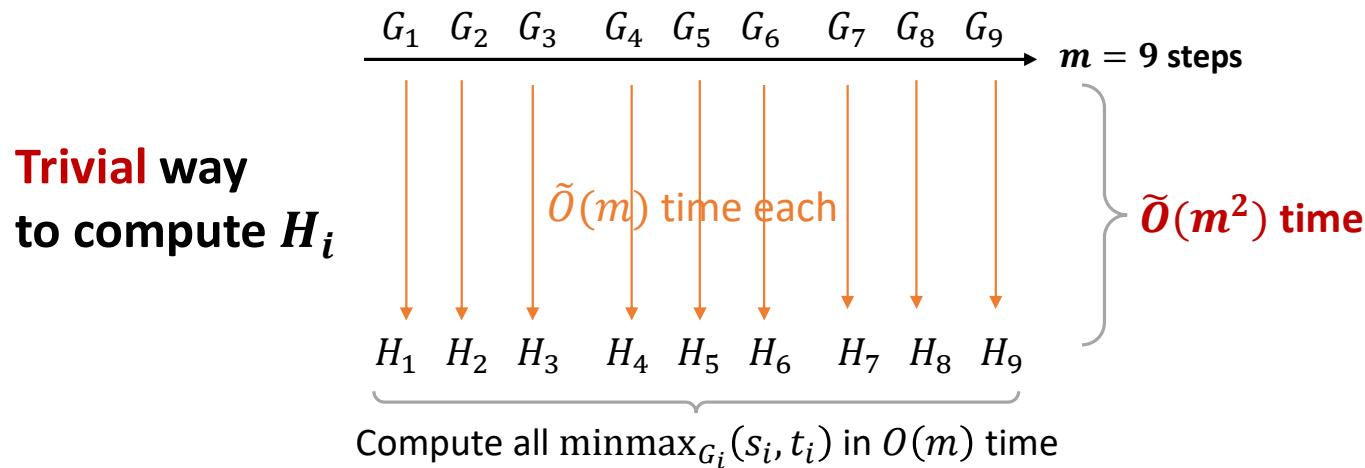
Anyway, what are **offline** algorithms?

Offline fully dynamic minmax paths

- Assume for notational convenience:
 - At step i , we are given **both** edge insert/delete (u_i, v_i) **AND** query (s_i, t_i)
- Input: **whole** sequence of m updates/queries (Think $|E(G_i)| \leq m$ for all steps i)
 - **“Offline”**: get **whole** sequence, not revealed to us one by one like before
- Output: for all i , compute $\text{minmax}_{G_i}(s_i, t_i)$
- Trivial: $O(m^2)$ time.
- Today: $\tilde{O}(m^{1.5})$ time... then $\tilde{O}(m)$ time (Think $\tilde{O}(1)$ per update/query)

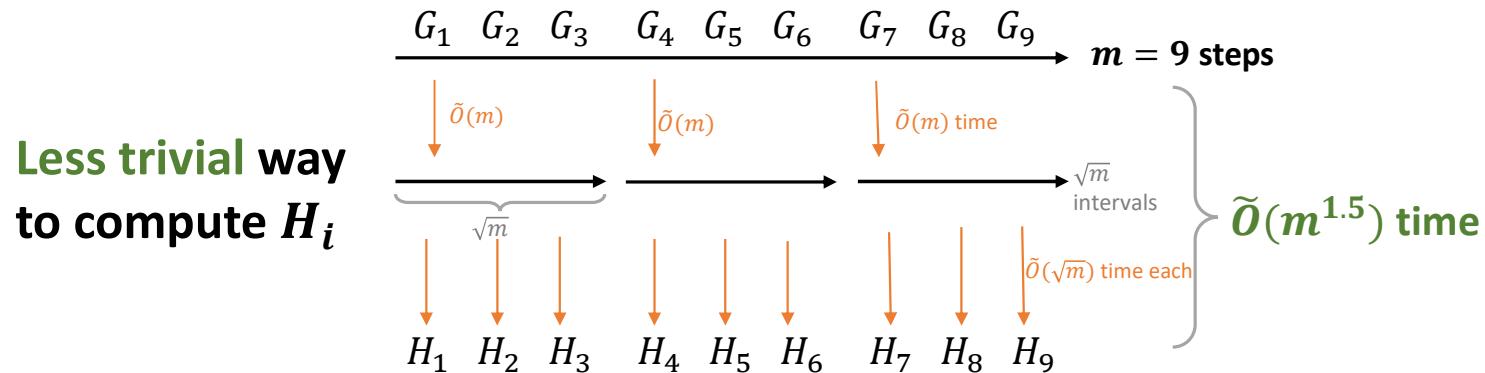
Offline algo: high-level idea

- Our goal:
 - For all i , compute $H_i \equiv G_i$ w.r.t. $\{s_i, t_i\}$. Note $|E(H_i)| = O(1)$.
- Then:
 - For all i , compute $\text{minmax}_{G_i}(s_i, t_i) = \text{minmax}_{H_i}(s_i, t_i)$ in $O(m)$ total time.



Offline algo: high-level idea

- Our goal:
 - For all i , compute $H_i \equiv G_i$ w.r.t. $\{s_i, t_i\}$. Note $|E(H_i)| = O(1)$.
- Then:
 - For all i , compute $\text{minmax}_{G_i}(s_i, t_i) = \text{minmax}_{H_i}(s_i, t_i)$ in $O(m)$ total time.

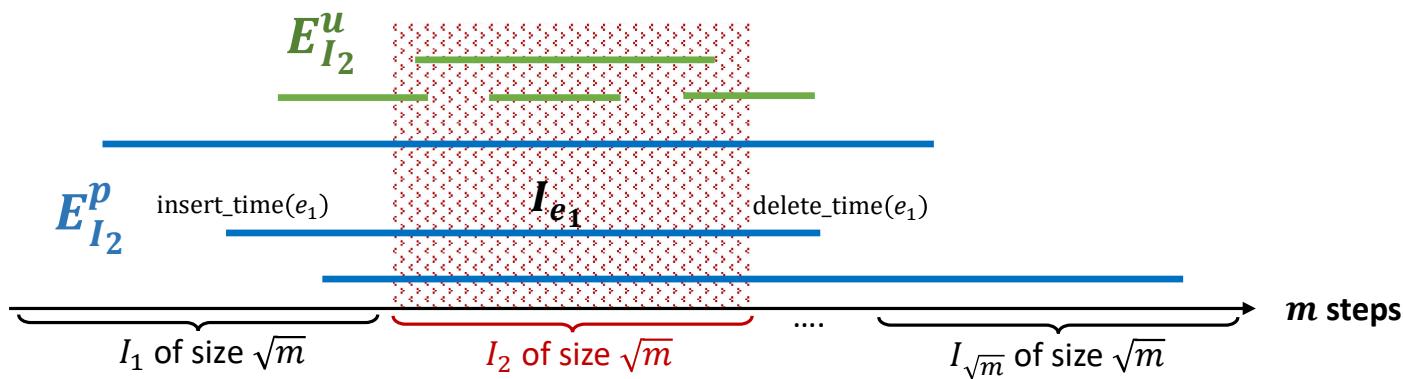
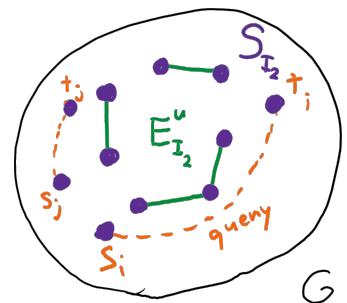


Let's see the details...

Set up notations

Divide update sequence into intervals $\mathcal{I} = \{I_1, \dots, I_{\sqrt{m}}\}$ of length \sqrt{m} . Fix $I \in \mathcal{I}$.

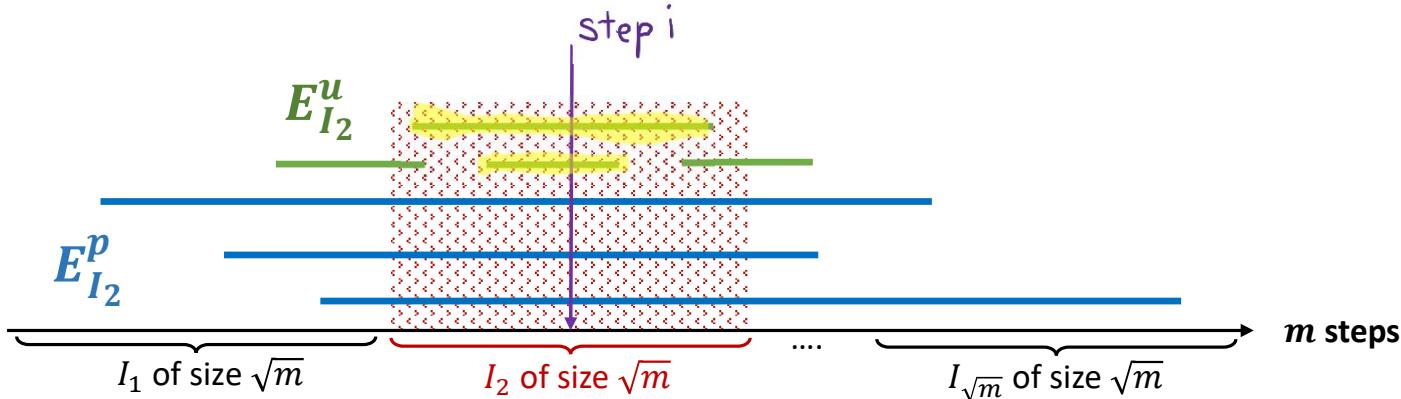
- Interval of edge e : $I_e = [\text{insert_time}(e), \text{delete_time}(e)]$
- Permanent edges in I : $E_I^p = \{e \mid I \subseteq I_e\}$ $|E_I^p| \approx m$
- Updated edges in I : $E_I^u = \{e \mid I \cap I_e \neq \emptyset, I\}$ $|E_I^u| \approx \sqrt{m}$
- Terminals for I : $S_I = V(E_I^u) \cup V(Q_I)$ where $Q_I = \cup_{i \in I} \{s_i, t_i\}$. $|S_I| \approx \sqrt{m}$
- Think: S_I are endpoints of updates/queries during interval I .



$m^{1.5}$ -time offline algo

Algo: For all $I \in \mathcal{I}$,

1. Build $H_I^{\text{Interval}} \equiv E_I^p$ w.r.t. S_I
2. For each $i \in I$
 - $H_i^{\text{Insert}} \leftarrow H_I^{\text{Interval}} \cup (G_i \setminus E_I^p)$
 - Build $H_i \equiv H_i^{\text{Insert}}$ w.r.t. $\{s_i, t_i\}$



Permanent edges in I :

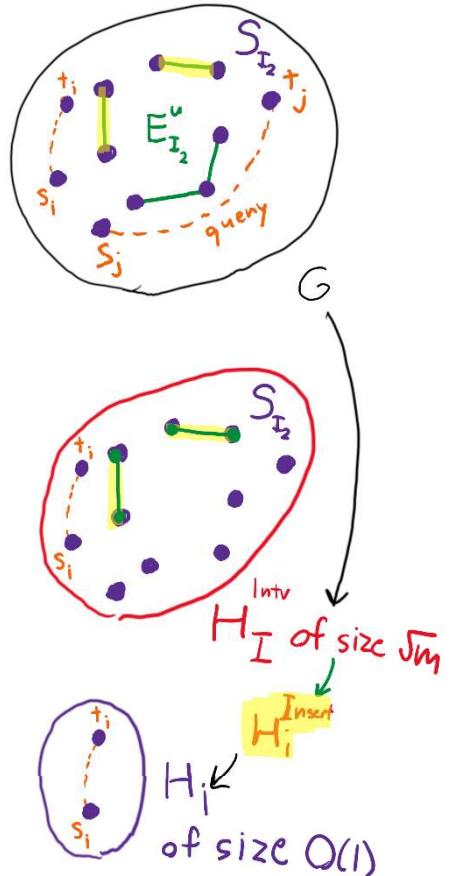
$$E_I^p = \{e \mid I \subseteq I_e\}$$

Updated edges in I :

$$E_I^u = \{e \mid I \cap I_e \neq \emptyset, I \neq I_e\}$$

Terminals for I :

$$S_I = V(E_I^u) \cup V(Q_I)$$



$m^{1.5}$ -time offline algo

Algo: For all $I \in \mathcal{I}$,

1. Build $H_I^{\text{Interval}} \equiv E_I^p$ w.r.t. S_I
2. For each $i \in I$
 - $H_i^{\text{Insert}} \leftarrow H_I^{\text{Interval}} \cup (G_i \setminus E_I^p)$
 - Build $H_i \equiv H_i^{\text{Insert}}$ w.r.t. $\{s_i, t_i\}$

Correctness: Want to show $H_i \equiv G_i$ w.r.t. $\{s_i, t_i\}$ for each i

- $H_i^{\text{Insert}} \equiv G_i$ w.r.t. S_I
- $H_I^{\text{Interval}} \equiv E_I^p$ w.r.t. S_I from Step 1
- $H_I^{\text{Interval}} \cup (G_i \setminus E_I^p) \equiv E_I^p \cup (G_i \setminus E_I^p)$ w.r.t. S_I by **composability**

Permanent edges in I :

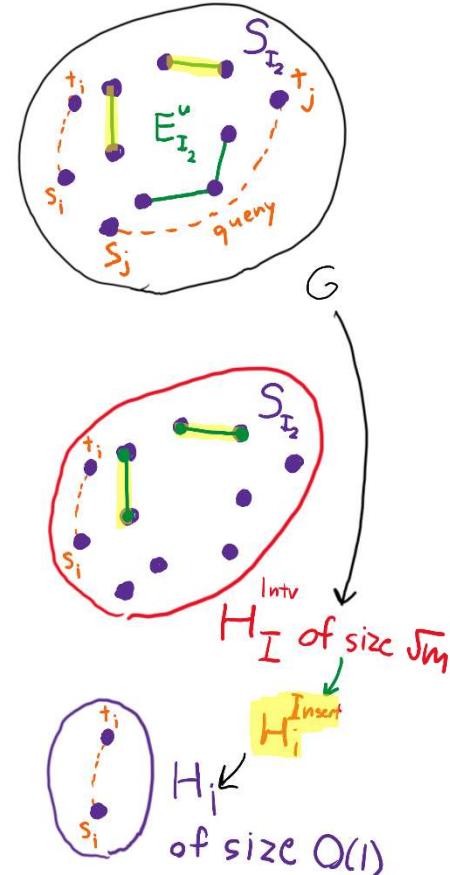
$$E_I^p = \{e \mid I \subseteq I_e\}$$

Updated edges in I :

$$E_I^u = \{e \mid I \cap I_e \neq \emptyset, I \neq I_e\}$$

Terminals for I :

$$S_I = V(E_I^u) \cup V(Q_I)$$



$m^{1.5}$ -time offline algo

Algo: For all $I \in \mathcal{J}$,

1. Build $H_I^{\text{Interval}} \equiv E_I^p$ w.r.t. S_I
2. For each $i \in I$
 - $H_i^{\text{Insert}} \leftarrow H_I^{\text{Interval}} \cup (G_i \setminus E_I^p)$
 - Build $H_i \equiv H_i^{\text{Insert}}$ w.r.t. $\{s_i, t_i\}$

Correctness:

- $H_i^{\text{Insert}} \equiv G_i$ w.r.t. S_I
- $H_i^{\text{Insert}} \equiv G_i$ w.r.t. $\{s_i, t_i\}$ as $S_I \supseteq \{s_i, t_i\}$.
- $H_i \equiv H_i^{\text{Insert}}$ w.r.t. $\{s_i, t_i\}$ by Step 2.2
- $H_i \equiv G_i$ w.r.t. $\{s_i, t_i\}$ **(DONE)**

Permanent edges in I :

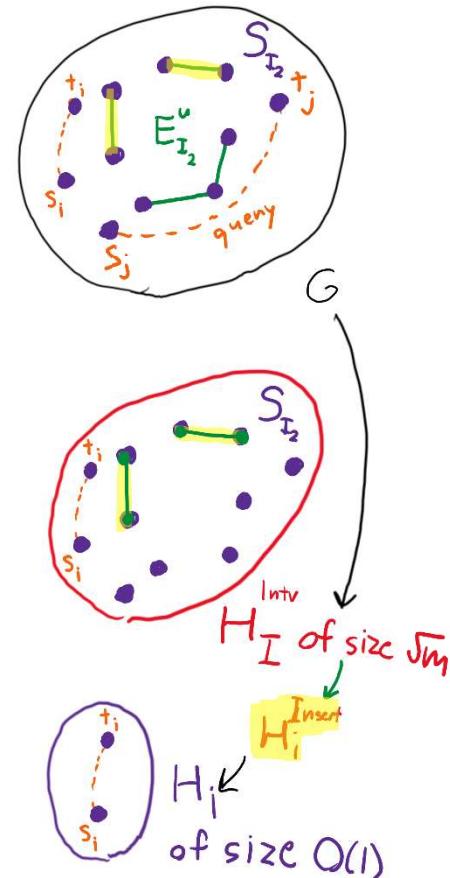
$$E_I^p = \{e \mid I \subseteq I_e\}$$

Updated edges in I :

$$E_I^u = \{e \mid I \cap I_e \neq \emptyset, I \neq I_e\}$$

Terminals for I :

$$S_I = V(E_I^u) \cup V(Q_I)$$



$m^{1.5}$ -time offline algo

Algo: For all $I \in \mathcal{I}$,

1. Build $H_I^{\text{Interval}} \equiv E_I^p$ w.r.t. S_I
2. For each $i \in I$
 - $H_i^{\text{Insert}} \leftarrow H_I^{\text{Interval}} \cup (G_i \setminus E_I^p)$
 - Build $H_i \equiv H_i^{\text{Insert}}$ w.r.t. $\{s_i, t_i\}$

Correctness:

- $H_i^{\text{Insert}} \equiv G_i$ w.r.t. S_I
- $H_i^{\text{Insert}} \equiv G_i$ w.r.t. $\{s_i, t_i\}$ as $S_I \supseteq \{s_i, t_i\}$.
- $H_i \equiv H_i^{\text{Insert}}$ w.r.t. $\{s_i, t_i\}$ by Step 2.2
- $H_i \equiv G_i$ w.r.t. $\{s_i, t_i\}$ (**DONE**)

Permanent edges in I :

$$E_I^p = \{e \mid I \subseteq I_e\}$$

Updated edges in I :

$$E_I^u = \{e \mid I \cap I_e \neq \emptyset, I\}$$

Terminals for I :

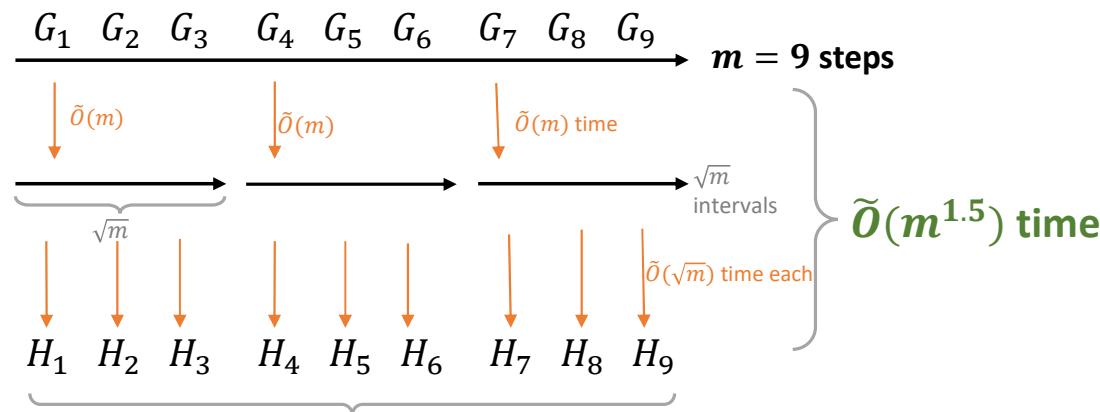
$$S_I = V(E_I^u) \cup V(Q_I)$$

\sqrt{m} loops $\tilde{O}(m)$ time
 m total loops $\tilde{O}(\sqrt{m})$ time $\tilde{O}(\sqrt{m})$ time $\tilde{O}(m^{1.5})$



Summary: $\tilde{O}(m^{1.5})$ -time offline algo

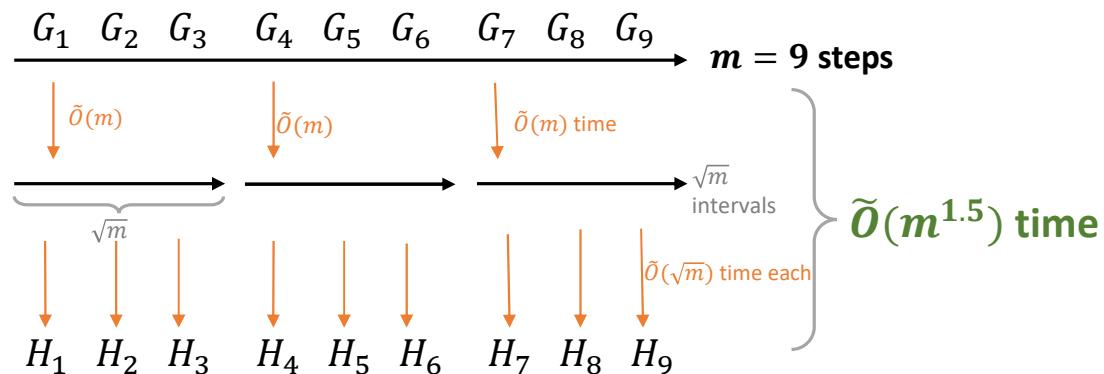
- For all i , obtain $H_i \equiv G_i$ w.r.t. $\{s_i, t_i\}$ in $\tilde{O}(m^{1.5})$ time



Then, compute all $\text{minmax}_{G_i}(s_i, t_i)$ in $O(m)$ time

$\tilde{O}(m)$ -time offline algo

- 2 levels of sparsifiers $\rightarrow \tilde{O}(m^{1.5})$ -time algorithm



- k levels of sparsifiers $\rightarrow \tilde{O}(m^{1+1/k})$ -time algorithm
 - Note:** If sparsifiers have α -approx., get α^k -approx. offline dynamic algorithms.
- For us, $\alpha = 1$ (exact). Setting $k \leftarrow \log n$, get $\tilde{O}(m)$ time

Conclude: dynamic algo from vertex sparsifier

- We saw a black-box transformation:

Fast vertex-sparsifier algorithms → Fast **offline** **fully dynamic** algorithms

- Can get **non-offline** **dynamic** algorithm too (very similar, omitted).

- If, additionally, vertex-sparsifier algorithm can...

Many sparsifier algorithms naturally support **add-terminals**

If handle **add-terminal** operation → Fast **incremental** algorithms

If handle **add-terminal & delete** operations → Fast **fully dynamic** algorithms

*omit polylog(n) in size

Open problems in Dynamic vertex sparsifiers

Promising and rich area. **Every red highlight below** shows that some aspect might be improved.

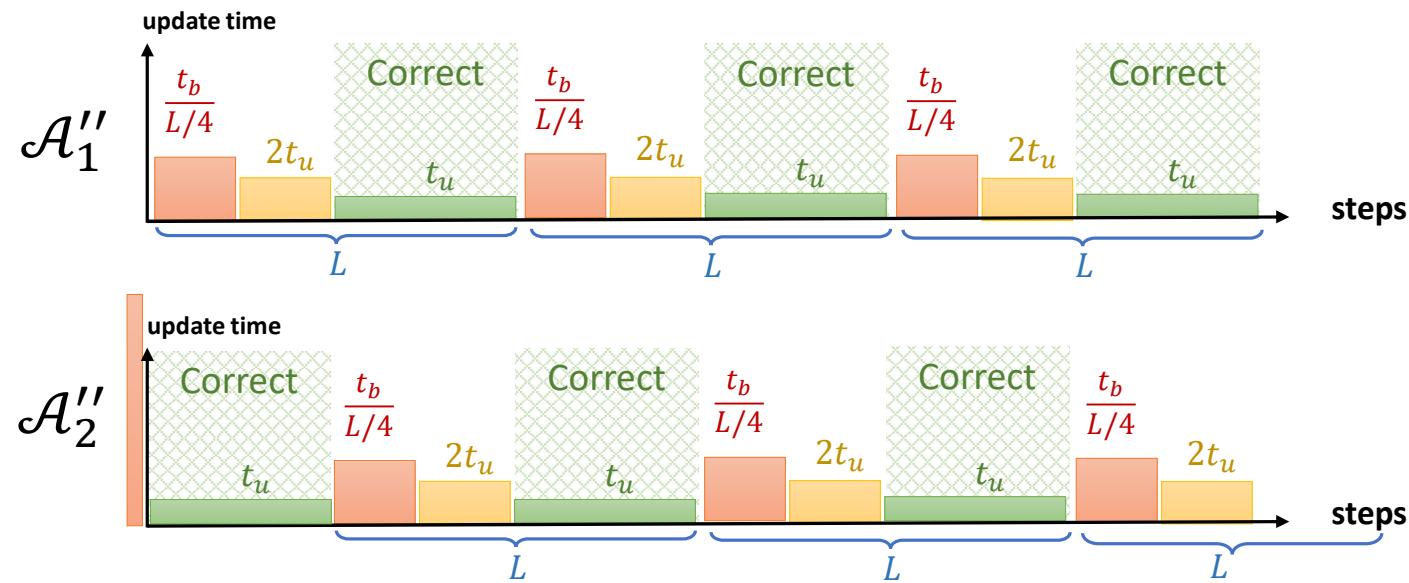
Problems	Setting	Approx	Size	Time
Minmax paths	Fully dyn [Epp'94] [NSW'17]	1	$ S $	$n^{o(1)}$
Shortest paths	Incremental [TZ'05] [CGHPS'20]	k	$ S n^{1/k}$	$\tilde{O}(n^{1/k})$
	Fully dyn [CGHPS'20]	$\log n$	$\beta n + S $	$\tilde{O}(1/\beta)$
c-connectivity	Static [Liu'23]	1	$ S c^3$	Poly
	Fully dyn [CDLKPPSV'20] [JS'20]	1	$ S c^{O(c)}$	$n^{o(1)}c^{O(c)}$
Max flow (multicommodity)	Static	$\log S $	$ S $	Poly
	Incremental [RST'14] [CGHPS'20]	$\log^4 n$	$ S $	$\tilde{O}(1)$
	Fully dyn unweighted [GRST'21]	$n^{o(1)}$	$ S $	$n^{o(1)}$
	Fully dyn [CGHPS'20]	$\text{polylog } n$	$\beta n + S $	$\tilde{O}(1/\beta)$
Effective resistance	Static [KS'16] [DKPRS'16]	$1 + \epsilon$	$ S $	$\tilde{O}(m)$
	Fully dyn [DGGP'19] [BGJLLPS'21]	$1 + \epsilon$	$\beta m + S $	$\tilde{O}(1/\beta^2)$
Low stretch trees	Fully dyn [CKLPPS'22]	$\log n$	m/k	$kn^{o(1)}$

Conclusion

You have learned

- 3 templates for designing dynamic graph algorithms
 1. Rebuild in the background
 2. Batching
 3. Vertex sparsifiers
- Along the way, many terminology in the area
 - worst-case vs. amortized update time
 - fully dynamic vs. partially dynamic (incremental/decremental)
 - one-batch algorithms (a.k.a. sensitivity oracles, emergency algorithms)
 - offline dynamic algorithms

Template 1: Rebuild in the background



Template 2: Batching

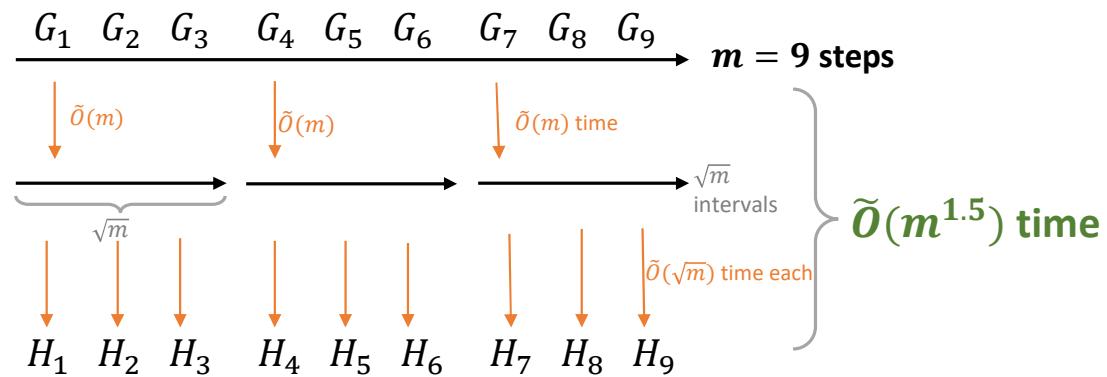
Often easy to
design

One-batch algorithms + rebuild in the background

It works for k -batch algorithms too [[NSW'17](#)] [[BBGNSS'22](#)] [[JS'22](#)]

Dynamic algorithms

Template 3: Vertex sparsifiers



Learn more templates

1. **(Recent and promising):** Optimization methods for dynamic algos.
 - Static solutions robust against update
(congestion balancing [[BGS'20](#), ['21](#)], entropy-regularized solutions [[JJST'22](#)])
 - Dynamic Multiplicative Weight Update [[Gupta'14](#)] [[BKS'22](#)] [[BBL'S'23](#)]
 - Dynamic Interior Point Methods [[BLS'22](#)]
2. Given incremental algo → get offline fully dynamic algo [[PR'22](#)]
3. Given decremental algo → get fully dynamic algo
 - Problem-specific: Connectivity, MST, APSP
4. Any “decomposable” problems → get fully dynamic algo [[Overmars' book](#)]
 - E.g. dynamic range searching, quad-tree, other geometric objects

Other Generic Techniques in Dynamic Graphs

- Expander decomposition
 - Used for dynamic connectivity, shortest paths in both undirected and directed graphs
 - My tutorial: [Part 1 and 2](#)
 - [My course](#) on using expanders for fast algorithm (**updated version in 1-2 months!**)
- Edge-degree constrained subgraph (EDCS):
 - key objects for dynamic matching
 - [Aaron's tutorial](#)
- Randomized Greedy:
 - General approach for both dynamic maximal matching and maximal independent set
 - [Soheil's tutorial](#)

Thank you!