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Dynamic Algorithms: 
Algorithms that Interact
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Dynamic graph algorithms

Setting:
1. Given an input graph 𝐺଴, preprocess it.
2. Then, for each time step, 

• Given an update or a query (generated online/on the fly),

• update the data structure and/or answer the query.

• Update are often insertions and deletions of an edge (a vertex sometimes)

• Example of tasks
• Answer queries: Is 𝐺 connected? what is (𝑠, 𝑡)-distance?
• Maintain objects: minimum spanning tree, maximal matching, etc.



Terminology

• 𝐺௜ = the graph after 𝑖 steps 
• Update sequence: the sequence of updates/queries
• Update time: time needed at each step. 

• 𝑇 worst-case update time: every step requires ≤ 𝑇 time. 
• 𝑇 amortized update time: after 𝑘 steps (for large enough 𝑘), the total time is ≤ 𝑘𝑇

• Preprocessing/initialization time: time to process 𝐺଴

steps

Update time

Initialization time
(does not count in 

update time) Worst-case update time

Amortized update time

𝐺଴     𝐺ଵ 𝐺ଶ 𝐺ଷ 𝐺ସ 𝐺ହ …



Fully dynamic vs. Partially Dynamic

• Fully dynamic algorithms handle both insertions and deletions
• Partially Dynamic 

• incremental algorithms handle only insertions
• decremental algorithms handle only deletions



In this talk, you will learn…

3 templates for designing dynamic graph algorithms
1. Rebuild in the background
2. Batching
3. Vertex sparsifiers

All templates are general. 
They work for every problem.

Only Template 3 is specific to graphs.

For each template, I will give a complete proof 
of a concrete algorithm.



Template 0 (warm-up):
Rebuild



Fully dynamic 1 + 𝜖 -approx. matching

• Def: 
• Matching is a set of vertex-disjoint edges 
• Given graph 𝐺, 𝝁 𝑮 = size of maximum matching

• Problem:
• Init: graph 𝐺 with 𝑛 vertices
• Then: online sequence of edge insertions/deletions
• Goal: maintain 𝟏 + 𝝐 -approx. of 𝝁(𝑮)

• Algo:
• Trivial: 𝑂 𝐸 𝐺 /𝜖 = 𝑂(𝑛ଶ/𝜖) update time. (recompute from scratch after edge update)
• Today: 𝑂(𝑛/𝜖ଶ) update time. 



Algorithm

• Repeat: 
• (Rebuild step): 𝜇෤ ← (1 + 𝜖)-approx. of 𝜇 𝐺 computing from scratch
• For the next 𝜖𝜇෤ steps, just return 𝜇෤.

• Correct: 
• Each edge update may change the size of 𝜇 𝐺 by at most 1.
• So, 𝜇 𝐺 = 1 ± 𝜖 𝜇෤ ± 𝜖𝜇෤ at all time.
• That is, 𝜇෤ is always (1 + 𝑂(𝜖))-approx. of 𝜇 𝐺

steps

Worst-case 
update time

𝑡ଵ 𝑡ଶ 𝑡ଷ

𝜖𝜇෤௧భ
𝜖𝜇෤௧మ

𝜖𝜇෤௧య

𝐸 𝐺௧భ
/𝜖

𝐸 𝐺௧మ
/𝜖

𝐸 𝐺௧య
/𝜖



Analysis

• Update time:
• 𝑂

ா ீ೟ /ఢ

ఢఓ ீ೟
amortized update time.

• = 𝑂(𝑛/𝜖ଶ). Why?

• Claim: 𝐸 𝐺 ≤ 𝜇 𝐺 ⋅ 2𝑛
• Let 𝑀∗ be a maximum matching 𝑀∗ = 𝜇(𝐺)

• Observe: every edge is incident to 𝑀∗ (otherwise 𝑀∗ is not max).
• Deleting an edge 𝑒 = (𝑢, 𝑣) in 𝑀∗

removes at most deg 𝑢 + deg 𝑣 ≤ 2𝑛 edges in 𝐺
• Repeat 𝜇(𝐺) times, no edge left.

steps

Worst-case 
update time

𝑡ଵ 𝑡ଶ 𝑡ଷ

𝜖𝜇෤௧భ
𝜖𝜇෤௧మ

𝜖𝜇෤௧య

𝐸 𝐺௧భ
/𝜖

𝐸 𝐺௧మ
/𝜖

𝐸 𝐺௧య
/𝜖



Template 0: Rebuild 

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• Obtain algo 𝒜′
• can handle infinite updates
• 𝑂(

௧್

௅
+ 𝑡௨) amortized update time

• In our case, fully dynamic (1 + 𝜖)-matching with 𝑂(𝑛/𝜖ଶ) amortized update time
• 𝐿 = Θ(𝜖𝜇 𝐺 ), 𝑡௕ = 𝑂(

ா ீ

ఢ
), 𝑡௨ = 𝑂(1)

• Next: worst-case update time instead

steps

Worst-case 
update time

𝐿

≤ 𝑡௕ ≤ 𝑡௕

≤ 𝑡௕

𝐿 𝐿

≤ 𝑡௨ ≤ 𝑡௨ ≤ 𝑡௨



Template 1:
Rebuild in the Background

Overmars’83 “Global Rebuilding”
Used in many many papers.



Recall

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• algo 𝒜′ with 𝑂(
௧್

௅
+ 𝑡௨) amortized update time

steps

Worst-case 
update time

𝐿

≤ 𝑡௕ ≤ 𝑡௕

≤ 𝑡௕

𝐿 𝐿

≤ 𝑡௨ ≤ 𝑡௨ ≤ 𝑡௨



Recall

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• algo 𝒜′ with 𝑂(
௧್

௅
+ 𝑡௨) amortized update time

steps

Worst-case 
update time

𝐿

≤ 𝑡௕ ≤ 𝑡௕

≤ 𝑡௕

𝐿 𝐿

≤ 𝑡௨ ≤ 𝑡௨ ≤ 𝑡௨

Simplified picture

Next algo:
• Small worst-case update time.
• Correct on half of update 

sequence (this is easy to fix)



Divide each phase of 𝐿 steps from [𝑡଴, 𝑡଴ + 𝐿] into 3 periods
1. (Rebuild) first 𝐿/4 steps:

• Rebuild data structure for 𝐺௧బ
but distribute the work evenly on the period.

• Ignore updates. 

2. (Catch-up) next 𝐿/4 steps:
• Each step, feed two updates. (Double speed)
• Observe: At the end, data structures catch up with all updates

3. (Active) last 𝐿/2 steps:
• Feed update normally. 
• Get correct answers in this period

Worst-case update time: 𝑂(𝑡௕/𝐿 + 𝑡௨)

Algorithm 𝒜′′: 𝑂(
௧್

௅
+ 𝑡௨) worst-case update time 

steps

Worst-case
update time

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

Correct on half of update sequence.
How to fix?

Correct Correct



Correct Correct Correct

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨𝒜ଵ

ᇱᇱ

update time

CorrectCorrectCorrect

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4
2𝑡௨𝑡௨

𝒜ଶ
ᇱᇱ

update time

• Make two instances 𝒜ଵ
ᇱᇱ and 𝒜ଶ

ᇱᇱ. (Increase update time by factor 2.) 

• Schedule their periods so that…
• At every step, one of them is correct.

Correct answers at all steps

Preprocessing time 
before seeing any update.

Does not  count in update time.



Conclude: Rebuild in the background

• Given algo 𝒜
• can handle 𝐿 updates
• 𝑡௕ = rebuild time
• 𝑡௨ = worst-case update time

• Obtain algo 𝒜′′
• 𝑂(

௧್

௅
+ 𝑡௨) worst-case update time

• Conclude:
• fully dynamic (1 + 𝜖)-matching with 𝑂(𝑛/𝜖ଶ) worst-case update time. 
• Exercise: 𝑂(deg୫ୟ୶ (𝐺)/𝜖ଶ) worst-case update time Hint: 𝐸 𝐺 ≤ 𝜇 𝐺 ⋅ 2deg୫ୟ୶ (𝐺)



Template 2:
Batching

Used in 
• Dynamic MST [HK’01]
• Dynamic APSP with worst-case update time [Thorup’05] [ACK’17] [PW’20]
• Expander pruning with worst-case update time [NSW’17] [BBGNSSS’22] [JS’22]
• Dynamic DFS [BCCK’16]
• Let me know more



Decremental connectivity

• Problem:
• Init: graph 𝐺 with 𝑛 vertices and 𝑚 edges
• Then: online sequence of edge deletions only
• Maintain: is 𝑮 connected?

• Algo:
• Trivial: 𝑂(𝑚) worst-case update time. (BFS, for example)

• Today: 𝑂෨(𝑚ଶ/ଷ) worst-case update time. 



One-batch decremental connectivity

• Setting for one-batch algorithms
• Init: graph 𝐺
• Update: a single batch 𝐷 of 𝑑 edge deletions.
• Answer: is 𝐺ᇱ = 𝐺 ∖ 𝐷 connected?

• Will show later: one-batch algo 𝒜ୠୟ୲ୡ୦ with
• Init time: 𝑂෨(𝑚)
• Update time: 𝑂෨(𝑑ଶ)

• Next: how to get 𝑂(𝑚ଶ/ଷ) worst-case update time using 𝒜ୠୟ୲ୡ୦

Often easier 
to design



Reduction to one-batch algorithms

• Simple idea: to handle update sequence with one-batch algos 𝒜ୠୟ୲ୡ୦,
• Given the 𝑖௧௛ update 𝑢௜, 

feed the batch of first 𝒊 updates (𝑢ଵ, … , 𝑢௜) into 𝒜ୠୟ୲ୡ୦ (using 𝑂෨(𝑖ଶ) time, for us)

• Obtain algo 𝒜 that 
• can handle 𝐿 updates
• rebuild time: 𝑡௕ = 𝑂෨(𝑚)

• update time: 𝑡௨ = 𝑂෨ 𝐿ଶ

• Get algo 𝒜′ with 𝑂෨ 𝑚/𝐿 + 𝐿ଶ = 𝑂෨ 𝑚ଶ/ଷ worst-case update time 
• by choosing 𝐿 = 𝑚ଵ/ଷ

Recall:
Given algo 𝒜

can handle 𝐿 updates
𝑡௕ = rebuild time
𝑡௨ = worst-case update time

Obtain algo 𝒜′′

𝑂(
௧್

௅
+ 𝑡௨) worst-case update time

Remain to show 𝒜ୠୟ୲ୡ୦…



Ideas of one-batch algo 𝒜ୠୟ୲ୡ୦

• Init: 𝑇 ← spanning tree of 𝐺
• Update: given a set 𝐷 of 𝑑 edge deletions,

1. 𝑇ଵ, … , 𝑇ௗᇲ ← connected components of 𝑇 ∖ 𝐷. (𝑑ᇱ ≤ 𝑑 + 1)

2. Sufficient: find a non-tree-edge between 𝑇௜ and 𝑇௝, if exists, for 𝑖, 𝑗 ∈ [𝑑ᇱ]



Ideas of one-batch algo 𝒜ୠୟ୲ୡ୦

• Init: 𝑇 ← spanning tree of 𝐺
• Update: given a set 𝐷 of 𝑑 edge deletions,

1. 𝑇ଵ, … , 𝑇ௗᇲ ← connected components of 𝑇 ∖ 𝐷. (𝑑ᇱ ≤ 𝑑 + 1)

2. Sufficient: find a non-tree-edge between 𝑇௜ and 𝑇௝, if exists, for 𝑖, 𝑗 ∈ [𝑑ᇱ]

Next: 
• show how to find these edges
• Need two tools: 

• Euler-tour
• 2d-range query



• 2d-range query: 𝑃 is a set of points in 2d.
1. Update: Insert/delete a point in 𝑃 in 𝑂෨(1) time
2. Query: Given rectangle 𝐼௫ × 𝐼௬, return a point 𝑝 ∈ 𝑃 ∩ (𝐼௫ × 𝐼௬) in 𝑂෨(1) time

• Euler-tour:
• Represent any tree 𝑇 as a path.
• See example: 

• Euler tour of 𝑇 is Eu 𝑇 = (1,2,3,4,5,4,3,6,7,6,3,2)

• Each edge in 𝑇 corresponds to 2 edges in Eu 𝑇

Basic tools for one-batch algo 𝒜ୠୟ୲ୡ୦



• 2d-range query: 𝑃 is a set of points in 2d.
1. Update: Insert/delete a point in 𝑃 in 𝑂෨(1) time
2. Query: Given rectangle 𝐼௫ × 𝐼௬, return a point 𝑝 ∈ 𝑃 ∩ (𝐼௫ × 𝐼௬) in 𝑂෨(1) time

• Euler-tour:
• Represent any tree 𝑇 as a path.
• See example: 

• Euler tour of 𝑇 is Eu 𝑇 = (1,2,3,4,5,4,3,6,7,6,3,2)

• Each edge in 𝑇 corresponds to 2 edges in Eu 𝑇

Basic tools for one-batch algo 𝒜ୠୟ୲ୡ୦



• Init:
1. 𝑇 ← spanning tree of 𝐺
2. Eu 𝑇 ← Euler-tour of 𝑇
3. For each non-tree edge (𝑢, 𝑣), 

add (minrank୉୳ ் 𝑢 , minrank୉୳ ் 𝑣 ) to set 𝑃

• Update: given a set 𝐷 of 𝑑 edge deletions,
1. Delete points in 𝑃 corresponding to deleted non-tree edges 
2. 𝐼ଵ, … , 𝐼ௗᇲᇲ ← intervals of Eu 𝑇 after deleting tree edges. 𝑑ᇱᇱ = 𝑂(𝑑)

3. Query 𝐼௜ × 𝐼௝ to for all 𝑖, 𝑗 ∈ [𝑑ᇱᇱ]
 Find a non-tree-edge between 𝑇௜ and 𝑇௝ for all 𝑖, 𝑗 ∈ [𝑑ᇱ]

One-batch algo 𝒜ୠୟ୲ୡ୦

1  2  3  4  3  2  5  6  5  2
1 
2 
3 
4 
3 
2 
5 
6 
5 
2

𝑂෨(𝑚)
time

𝑂෨(𝑑)
time

𝑂෨(𝑑ଶ)
time



Conclude: dynamic algo from one-batch algo

• Get: one-batch algo 𝒜ୠୟ୲ୡ୦ with
• Init time: 𝑂෨(𝑚)

• Update time: 𝑂෨(𝑑ଶ)

• By previous reduction: from 𝒜ୠୟ୲ୡ୦, we get 
• Decremental connectivity algorithm with 𝑂(𝑚ଶ/ଷ) worst-case update time



Conclude: dynamic algo from one-batch algo

• If we have: one-batch algo 𝒜ୠୟ୲ୡ୦ with
• Init time: 𝑂෨(𝑚)

• Update time: 𝑂෨(𝑑)

• By previous reduction: from 𝒜ୠୟ୲ୡ୦, we would get 
• Decremental connectivity algorithm with 𝑂(𝑚ଵ/ଶ) update time



Exercise

• Setting for 2-batch algorithms:
• Init: graph 𝐺
• First update: a batch 𝐷ଵ of 𝑑ଵ edge deletions.
• Second update: a batch 𝐷ଶ of 𝑑ଶ edge deletions.
• Answer: is 𝐺ᇱ = 𝐺 ∖ (𝐷ଵ ∪ 𝐷ଶ) connected?

Exercise:
Given 2-batch algo 𝒜ୠୟ୲ୡ୦ with

• Init time: 𝑂෨(𝑚)
• First update time: 𝑂෨(𝑑ଵ)
• Second update time: 𝑂෨(𝑑ଶ)

1. Show a dynamic algorithm with 𝑂෨(𝑚ଵ/ଷ) worst-case update time.
2. Generalize to the 𝑘-batch setting, get 𝑂෨(𝑚ଵ/(௞ାଵ)) worst-case update time

Remark:
• Most 2-batch algos generalize to the k-batch

setting. (not for 1-batch algos)
• For example, Today’s 1-batch algorithm 

does not work in the 2-batch setting. Why?



Before Template 3:
Introduction to Vertex Sparsifiers
Extensively studied in both approximation and FPT (kernelization) communities.



Vertex Sparsifiers (aka Mimicking Networks)

Setting:
• Input: graph 𝐺 = 𝑉, 𝐸 , terminal set 𝑆 ⊆ 𝑉

• Output: graph 𝐻 s.t. 𝑆 ⊆ 𝑉(𝐻) and 
• 𝐸 𝐻 ≈ |𝑆|
• 𝐻 preserves information in 𝐺 related to 𝑆. Write “𝐻 ≈ 𝐺 w.r.t. 𝑆”

• 𝐻 is called a sparsifier of 𝑮 w.r.t. 𝑺.

• Example: Vertex sparsifier for shortest paths [CGHPS’20] based on [TZ’05]

• For any 𝑘, there exists 𝐻 s.t.
• 𝐸 𝐻 = 𝑂( 𝑆 𝑛ଵ/௞)
• For each 𝑢, 𝑣 ∈ 𝑆, distு 𝑢, 𝑣 ≈ distீ 𝑢, 𝑣 up to 𝑂 𝑘 factor.

• Today: Vertex sparsifier for minmax paths 



Minmax paths and Minimum Spanning Trees (MST)

• (𝑠, 𝑡)-minmax path 𝑃∗ has minimum max
௘∈௉∗

𝑤(𝑒) (𝑤(𝑒) is weight of edge 𝑒)

• minmax 𝑠, 𝑡 ≔ max
௘∈௉∗

𝑤(𝑒)

• Key point: MST preserves all minmax paths 
• 𝑇: MST of 𝐺. 
• 𝑃்(𝑠, 𝑡): unique (𝑠, 𝑡)-path in 𝑇

• Claim: 𝑃்(𝑠, 𝑡) is (𝑠, 𝑡)-minmax path in 𝐺 for all 𝑠, 𝑡

• Proof: Otherwise, there is another (𝑠, 𝑡)-path 𝑃ᇱ s.t.
• 𝑒୫ୟ୶ ← heaviest edge in 𝑃்(𝑠, 𝑡)
• max

௘∈௉∗
𝑤(𝑒) < 𝑤(𝑒୫ୟ୶ )

• So, there is 𝑒′ ∈ 𝑃′ s.t.
• 𝑇ᇱ = 𝑇 ∪ 𝑒ᇱ ∖ 𝑒୫ୟ୶ is a spanning tree 
• but  𝑤 𝑇′ < 𝑤(𝑇).  Contradiction.

Remember this.



Vertex sparsifier for minmax paths

Input: graph 𝐺 = 𝑉, 𝐸 , terminal set 𝑆 ⊆ 𝑉

Output: graph 𝐻
• 𝐸 𝐻 = 𝑂( 𝑆 )

• For all 𝑢, 𝑣 ∈ 𝑆, minmaxு 𝑢, 𝑣 = minmaxீ 𝑢, 𝑣 . (Write 𝑯 ≡𝐦𝐢𝐧𝐦𝐚𝐱 𝑮 w.r.t 𝑺)

Warming-up Algo: 
• What if 𝑆 = 𝑢, 𝑣 ?

• Easy: 𝐻 ← { 𝑢, 𝑣 } where 𝑤ு 𝑢, 𝑣 ← minmaxீ(𝑢, 𝑣)



Vertex sparsifier for minmax paths

Input: graph 𝐺 = 𝑉, 𝐸 , terminal set 𝑆 ⊆ 𝑉
Output: 𝐻 where 𝑆 ⊆ 𝑉(𝐻)

• 𝐸 𝐻 = 𝑂( 𝑆 )
• For all  𝑢, 𝑣 ∈ 𝑆, minmaxு 𝑢, 𝑣 = minmaxீ 𝑢, 𝑣

Algo:
1. 𝑇 ← MST of 𝐺.
2. 𝑆ᇱ ←  LCA_Closure்(𝑆). 

• For all 𝑢, 𝑣 ∈ 𝑆ᇱ, 𝐿𝐶𝐴 𝑢, 𝑣 ∈ 𝑆′. 
• Note that 𝑆ᇱ ≤ 2 𝑆 .

3. For each "adjacent" 𝑢, 𝑣 ∈ 𝑆′,
Add 𝑢, 𝑣 into 𝐻 where 𝑤ு 𝑢, 𝑣 ← max weight in 𝑃் 𝑢, 𝑣

Correctness: Exercise 
Hint: (MST preserves all minmax paths + the warm-up case)
Time: 𝑂෨(𝑚) Size: 𝑂( 𝑆 )



Composability

Def: The similarity relation “≈” is composable if
1. 𝐻 ≈ 𝐺 w.r.t. 𝑆

2. 𝑒 = (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑆,
Then, 𝐻 + 𝑒 ≈ 𝐺 + 𝑒 w.r.t. 𝑆

Lemma: The relation ≡𝐦𝐢𝐧𝐦𝐚𝐱 is composable.
Proof: Suppose 𝐻 ≡୫୧୬୫ୟ୶ 𝐺 w.r.t. 𝑆. For any (𝑠, 𝑡) where 𝑠, 𝑡 ∈ 𝑆,

minmaxீା௘ 𝑠, 𝑡 = min ൞

minmaxீ 𝑠, 𝑡

max{minmaxீ 𝑠, 𝑢 , 𝑤 𝑢, 𝑣 , minmaxீ 𝑣, 𝑡 }

max{minmaxீ 𝑠, 𝑣 , 𝑤 𝑣, 𝑢 , minmaxீ 𝑢, 𝑡 }



Composability

Def: The similarity relation “≈” is composable if
1. 𝐻 ≈ 𝐺 w.r.t. 𝑆

2. 𝑒 = (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑆,
Then, 𝐻 + 𝑒 ≈ 𝐺 + 𝑒 w.r.t. 𝑆

Lemma: The relation ≡𝐦𝐢𝐧𝐦𝐚𝐱 is composable.
Proof: Suppose 𝐻 ≡୫୧୬୫ୟ୶ 𝐺 w.r.t. 𝑆. For any (𝑠, 𝑡) where 𝑠, 𝑡 ∈ 𝑆,

minmaxீା௘ 𝑠, 𝑡 = min ൞

minmaxீ 𝑠, 𝑡

max{minmaxீ 𝑠, 𝑢 , 𝑤 𝑢, 𝑣 , minmaxீ 𝑣, 𝑡 }

max{minmaxீ 𝑠, 𝑣 , 𝑤 𝑣, 𝑢 , minmaxீ 𝑢, 𝑡 }

= min ൞

minmaxு 𝑠, 𝑡

max{minmaxு 𝑠, 𝑢 , 𝑤 𝑢, 𝑣 , minmaxு 𝑣, 𝑡 }

max{minmaxு 𝑠, 𝑣 , 𝑤 𝑣, 𝑢 , minmaxு 𝑢, 𝑡 }

= minmaxுା௘ 𝑠, 𝑡



Template 3:
Vertex Sparsifiers

Used in 
• The template is explicit in [GHP’17, CGHPS’20]
• Offline dynamic algo for MST [Epp’94] and O(1)-connectivity [PSS’19, CDLKPPSV’20]. Non-offline version [NSW’17, JS’20]
• Dynamic effective resistance [GHP’18, DGGP’19]
• Modern max flows algorithms



Plan

1. Show reduction
• Given a fast algorithm for vertex sparsifier for minmax paths,
• Obtain offline dynamic algorithm for minmax paths 
The template work for any problem.

2. Discuss how to get non-offline dynamic algorithms
3. Open problems (a lot of growth, promising)

Anyway, what are offline algorithms?



Offline fully dynamic minmax paths

• Assume for notational convenience:
• At step 𝑖, we are given both edge insert/delete (𝑢௜, 𝑣௜) AND query (𝑠௜, 𝑡௜)

• Input: whole sequence of 𝑚 updates/queries (Think 𝐸 𝐺௜ ≤ 𝑚 for all steps 𝑖)

• “Offline”: get whole sequence, not revealed to us one by one like before

• Output: for all 𝑖, compute minmaxீ೔
𝑠௜, 𝑡௜

• Trivial: 𝑂(𝑚ଶ) time. 
• Today: 𝑂෨(𝑚ଵ.ହ) time… then 𝑂෨(𝑚) time (Think 𝑂෨(1) per update/query)



Offline algo: high-level idea

• Our goal: 
• For all 𝑖, compute 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜}. Note 𝐸 𝐻௜ = 𝑂(1).

• Then: 
• For all 𝑖, compute minmaxீ೔

𝑠௜, 𝑡௜ = minmaxு೔
𝑠௜, 𝑡௜ in 𝑂 𝑚 total time.

𝒎 = 𝟗 steps
𝐺ଵ   𝐺ଶ   𝐺ଷ     𝐺ସ   𝐺ହ   𝐺଺     𝐺଻   𝐺଼   𝐺ଽ

𝐻ଵ   𝐻ଶ   𝐻ଷ     𝐻ସ   𝐻ହ   𝐻଺     𝐻଻   𝐻଼   𝐻ଽ

Compute all minmaxீ೔
𝑠௜, 𝑡௜  in 𝑂 𝑚 time

𝑂෨(𝑚) time each 𝑶෩(𝒎𝟐) time
Trivial way 
to compute 𝑯𝒊



Offline algo: high-level idea

• Our goal: 
• For all 𝑖, compute 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜}. Note 𝐸 𝐻௜ = 𝑂(1).

• Then: 
• For all 𝑖, compute minmaxீ೔

𝑠௜, 𝑡௜ = minmaxு೔
𝑠௜, 𝑡௜ in 𝑂 𝑚 total time.

𝒎 = 𝟗 steps
𝐺ଵ   𝐺ଶ   𝐺ଷ     𝐺ସ   𝐺ହ   𝐺଺     𝐺଻   𝐺଼   𝐺ଽ

𝐻ଵ   𝐻ଶ   𝐻ଷ     𝐻ସ   𝐻ହ   𝐻଺     𝐻଻   𝐻଼   𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨( 𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time
Less trivial way
to compute 𝑯𝒊 𝑚

𝑚
intervals

Let’s see the details…



Divide update sequence into intervals ℐ = 𝐼ଵ, … , 𝐼 ௠ of length 𝑚. Fix 𝐼 ∈ ℐ.
• Interval of edge 𝑒:  𝐼௘ = [insert_time 𝑒 , delete_time 𝑒 ]

• Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘} 𝐸ூ
௣

≈ 𝑚

• Updated edges in 𝐼: 𝐸ூ
௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼} 𝐸ூ

௨ ≈ 𝑚

• Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ
௨ ∪ 𝑉(𝑄ூ) where 𝑄ூ =∪௜∈ூ {𝑠௜, 𝑡௜}. 𝑆ூ ≈ 𝑚

• Think: 𝑆ூ are endpoints of updates/queries during interval 𝐼.

Set up notations

𝒎 steps
𝐼ଵ of size 𝑚 𝐼 ௠ of size 𝑚𝐼ଶ of size 𝑚

…. 

𝑰𝒆𝟏insert_time 𝑒ଵ delete_time 𝑒ଵ

𝑬𝑰𝟐

𝒖

𝑬𝑰𝟐

𝒑



𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ,
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ

2. For each 𝑖 ∈ 𝐼

• 𝐻௜
୍୬ୱୣ୰୲ ← 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜}

𝒎 steps
𝐼ଵ of size 𝑚 𝐼 ௠ of size 𝑚𝐼ଶ of size 𝑚

…. 

𝑬𝑰𝟐

𝒖

𝑬𝑰𝟐

𝒑

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)



𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ,
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ

2. For each 𝑖 ∈ 𝐼

• 𝐻௜
୍୬ୱୣ୰୲ ← 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜}

Correctness: Want to show 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} for each 𝑖

• 𝐻௜
୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. 𝑆ூ

• 𝐻ூ
୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ

௣ w.r.t. 𝑆ூ from Step 1 
• 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

≡ 𝐸ூ
௣

∪ 𝐺௜ ∖ 𝐸ூ
௣ w.r.t. 𝑆ூ by composability

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)



𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ,
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ

2. For each 𝑖 ∈ 𝐼

• 𝐻௜
୍୬ୱୣ୰୲ ← 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ
௣

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜}

Correctness: 
• 𝐻௜

୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. 𝑆ூ

• 𝐻௜
୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} as 𝑆ூ ⊇ {𝑠௜, 𝑡௜}.

• 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲ w.r.t. {𝑠௜, 𝑡௜} by Step 2.2

• 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} (DONE)

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)



𝑚ଵ.ହ-time offline algo

Algo: For all 𝐼 ∈ ℐ, 𝑚 loops 
1. Build 𝐻ூ

୍୬୲ୣ୰୴ୟ୪ ≡ 𝐸ூ
௣ w.r.t. 𝑆ூ 𝑂෨(𝑚) time

2. For each 𝑖 ∈ 𝐼 𝑚 total loops
• 𝐻௜

୍୬ୱୣ୰୲ ← 𝐻ூ
୍୬୲ୣ୰୴ୟ୪ ∪ 𝐺௜ ∖ 𝐸ூ

௣
𝑂෨( 𝑚) time

• Build 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲w.r.t. {𝑠௜, 𝑡௜} 𝑂෨( 𝑚) time

Correctness: 
• 𝐻௜

୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. 𝑆ூ

• 𝐻௜
୍୬ୱୣ୰୲ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} as 𝑆ூ ⊇ {𝑠௜, 𝑡௜}.

• 𝐻௜ ≡ 𝐻௜
୍୬ୱୣ୰୲ w.r.t. {𝑠௜, 𝑡௜} by Step 2.2

• 𝐻௜ ≡ 𝐺௜ w.r.t. {𝑠௜, 𝑡௜} (DONE)

Permanent edges in 𝐼: 𝐸ூ
௣

= {𝑒 ∣ 𝐼 ⊆ 𝐼௘}
Updated edges in 𝐼: 𝐸ூ

௨ = {𝑒 ∣ 𝐼 ∩ 𝐼௘ ≠ ∅, 𝐼}
Terminals for 𝐼: 𝑆ூ = 𝑉 𝐸ூ

௨ ∪ 𝑉(𝑄ூ)

𝑂෨(𝑚ଵ.ହ)



Summary: 𝑂෨(𝑚ଵ.ହ)−time offline algo

• For all 𝑖, obtain 𝐻௜ ≡ 𝐺௜ w.r.t. 𝑠௜, 𝑡௜ in 𝑂෨(𝑚ଵ.ହ) time

𝒎 = 𝟗 steps
𝐺ଵ   𝐺ଶ   𝐺ଷ     𝐺ସ   𝐺ହ   𝐺଺     𝐺଻   𝐺଼   𝐺ଽ

𝐻ଵ   𝐻ଶ   𝐻ଷ     𝐻ସ   𝐻ହ   𝐻଺     𝐻଻   𝐻଼   𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨( 𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time𝑚

𝑚
intervals

Then, compute all minmaxீ೔
𝑠௜, 𝑡௜  in 𝑂 𝑚 time



𝑂෨(𝑚)−time offline algo

• 2 levels of sparsifiers 𝑂෨(𝑚ଵ.ହ)-time algorithm

• 𝑘 levels of sparsifiers𝑂෨(𝑚ଵାଵ/௞)-time algorithm
• Note: If sparsifiers have 𝛼-approx., get 𝛼௞-approx. offline dynamic algorithms.

• For us, 𝛼 = 1 (exact). Setting 𝑘 ← log 𝑛, get 𝑂෨ 𝑚 time

𝒎 = 𝟗 steps
𝐺ଵ   𝐺ଶ   𝐺ଷ     𝐺ସ   𝐺ହ   𝐺଺     𝐺଻   𝐺଼   𝐺ଽ

𝐻ଵ   𝐻ଶ   𝐻ଷ     𝐻ସ   𝐻ହ   𝐻଺     𝐻଻   𝐻଼   𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨( 𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time𝑚

𝑚
intervals



• We saw a black-box transformation:

Fast vertex-sparsifier algorithms   Fast offline fully dynamic algorithms

• Can get non-offline dynamic algorithm too (very similar, omitted).
• If, additionally, vertex-sparsifier algorithm can…

If handle add-terminal operation  Fast incremental algorithms

If handle add-terminal & delete operations  Fast fully dynamic algorithms

Conclude: dynamic algo from vertex sparsifier

Many sparsifier algorithms 
naturally support add-terminals



Open problems in Dynamic vertex sparsifiers

TimeSizeApproxSettingProblems

𝑛௢(ଵ)|𝑆|1Fully dyn [Epp’94] [NSW’17]Minmax paths

𝑂෨(𝑛ଵ/௞)𝑆 𝑛ଵ/௞𝑘Incremental [TZ’05] [CGHPS’20]Shortest paths

𝑂෨(1/𝛽)𝛽𝑛 + 𝑆log 𝑛Fully dyn [CGHPS’20]

Poly𝑆 𝑐ଷ1Static [Liu’23]𝒄-connectivity

𝑛௢ ଵ 𝑐ை(௖)𝑆 𝑐ை(௖)1Fully dyn [CDLKPPSV’20] [JS’20]

Poly |𝑆|log |𝑆|StaticMax flow (multicommodity) 

𝑂෨(1)|𝑆|logସ 𝑛Incremental [RST’14] [CGHPS’20]

𝑛௢(ଵ)|𝑆|𝑛௢(ଵ)Fully dyn unweighted [GRST’21] 

𝑂෨(1/𝛽)𝛽𝑛 + 𝑆polylog 𝑛Fully dyn [CGHPS’20]

𝑂෨(𝑚)|𝑆|1 + 𝜖Static [KS’16] [DKPRS’16]Effective resistance

𝑂෨(1/𝛽ଶ)𝛽𝑚 + |𝑆|1 + 𝜖Fully dyn [DGGP’19] [BGJLLPS’21]

𝑘𝑛௢(ଵ)𝑚/𝑘log 𝑛Fully dyn [CKLPPS’22]Low stretch trees

Promising and rich area. Every red highlight below shows that some aspect might be improved. 

*omit polylog(n) in size



Conclusion



You have learned

• 3 templates for designing dynamic graph algorithms
1. Rebuild in the background
2. Batching
3. Vertex sparsifiers

• Along the way, many terminology in the area
• worst-case vs. amortized update time
• fully dynamic vs. partially dynamic (incremental/decremental)
• one-batch algorithms (a.k.a. sensitivity oracles, emergency algorithms)
• offline dynamic algorithms 



Template 1: Rebuild in the background

CorrectCorrectCorrect

Correct Correct Correct

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

steps

𝐿 𝐿

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝑡௕

𝐿/4

𝑡௨
2𝑡௨

𝐿

𝑡௕

𝐿/4
2𝑡௨𝑡௨

𝒜ଵ
ᇱᇱ

𝒜ଶ
ᇱᇱ

update time

update time



Template 2: Batching

One-batch algorithms + rebuild in the background

Dynamic algorithms

Often easy to 
design

It works for 𝑘-batch algorithms too [NSW’17] [BBGNSSS’22] [JS’22] 



Template 3: Vertex sparsifiers

𝒎 = 𝟗 steps
𝐺ଵ   𝐺ଶ   𝐺ଷ     𝐺ସ   𝐺ହ   𝐺଺     𝐺଻   𝐺଼   𝐺ଽ

𝐻ଵ   𝐻ଶ   𝐻ଷ     𝐻ସ   𝐻ହ   𝐻଺     𝐻଻   𝐻଼   𝐻ଽ

𝑂෨(𝑚) time𝑂෨(𝑚)𝑂෨(𝑚)

𝑂෨( 𝑚) time each

𝑶෩(𝒎𝟏.𝟓) time𝑚

𝑚
intervals



Learn more templates

1. (Recent and promising): Optimization methods for dynamic algos.
• Static solutions robust against update 

(congestion balancing [BGS’20, ’21], entropy-regularized solutions [JJST’22])

• Dynamic Multiplicative Weight Update [Gupta’14] [BKS’22] [BBLS’23]

• Dynamic Interior Point Methods [BLS’22] 

2. Given incremental algo  get offline fully dynamic algo [PR’22]

3. Given decremental algo  get fully dynamic algo
• Problem-specific: Connectivity, MST, APSP

4. Any “decomposable” problems  get fully dynamic algo [Overmars’ book]

• E.g. dynamic range searching, quad-tree, other geometric objects



Other Generic Techniques in Dynamic Graphs

• Expander decomposition
• Used for dynamic connectivity, shortest paths in both undirected and directed graphs
• My tutorial: Part 1 and 2  
• My course on using expanders for fast algorithm (updated version in 1-2 months!)

• Edge-degree constrained subgraph (EDCS): 
• key objects for dynamic matching
• Aaron’s tutorial 

• Randomized Greedy:
• General approach for both dynamic maximal matching and maximal independent set
• Soheil’s tutorial

Thank you!


