204512/บรรยาย 1

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา

บันทึกคำบรรยายวิชา 204512 นี้ เป็นบันทึกที่นิสิตเขียนขึ้น เนื้อหาโดยมากยังไม่ผ่านการตรวจสอบอย่างละเอียด การนำไปใช้ควรระมัดระวัง

จดบันทึกคำบรรยายโดย: (กรุณาใส่ด้วย)

การบรรยายครั้งแรกจะเป็นการแนะนำวิชา 204512 และแสดงตัวอย่างการพิสูจน์ที่น่าสนใจ โดยมีเป้าหมายเพื่อที่จะพัฒนาระบบการกระจายความลับ (secret sharing)

คณิตศาสตร์มอดุโล

เราจะเริ่มจากนิยามพื้นฐานก่อน เราจะกล่าวว่าจำนวนเต็ม a หารจำนวนเต็ม b ลงตัว ถ้ามีจำนวนเต็ม k ที่ ak = b เขียนแทนด้วย a|b

นิยาม 
จำนวนเต็มบวก p ที่ p > 1 และมีตัวประกอบสองจำนวนคือ 1 และตัวมันเองเรียกว่า จำนวนเฉพาะ
นิยาม 
ถ้าและมีจำนวนเต็ม k ที่

ตัวอย่าง

นิยาม 
ถ้า

เราจะเริ่มพิสูจน์ความจริงพื้นฐานเกี่ยวกับการหารลงตัวก่อน หลายครั้งเราจะพิสูจน์ความจริงในรูป โดยการพิสูจน์ และ . นอกจากนี้ ในการพิสูจน์ประโยค เรามักใช้การพิสูจน์แบบทางอ้อม (indirect proof) โดยพิสูจน์ แทน

Proposition 1: เมื่อและต่อเมื่อ


Proof:

นั้นคือ

โดยที่ j,k,f เป็นจำนวนเต็ม หาผลต่างของสมการทั้งสองจะได้

นั้นคือ

เนื่องจาก m | a-b เราจะได้ว่ามีจำนวนเต็ม k ที่

Littlebox.png

Propostition 
ถ้า และ แล้ว

proof:

Littlebox.png

สังเกตว่าประโยค

นั้นไม่เป็นจริงเสมอไป

นิยาม: สำหรับถ้า จะเรียก b ว่าเป็น mutiplicative inverse modulo m ของ เขียนแทนด้วย

เช่น

ถ้ามี inverse สามารถหาผลหารได้โดยเอา inverse ไปคูณ

ตัวหารร่วมมาก (grestest common divisors)

ตัวหารร่วมมาก (gcd) ของ a และ b คือจำนวนเต็มที่มากที่สุดที่หาร a และ b ลงตัวแทนด้วย gcd(a,b)

Thm: ให้จำนวนเต็ม a ,m a จะมี inverse การคูณ modulo m เมื่อและต่อเมื่อ gcd(a,m) เท่ากับ 1


Proof:

(<=)
สมมุติ gcd(a,m) = 1

พิจารณา
0 mod m
a mod m
2a mod m
3a mod m
. . .
(m-1)a mod m

Claim 1: จำนวนเหล่านี้ไม่เท่ากันเลย

จาก Claim 1 เราจะได้ว่ามีจำนวนเต็ม b ที่อยู่ระหว่าง ที่ เนื่องจากมีจำนวน m จำนวนไม่ซ้ำกันจากค่าที่เป็นไปได้ระหว่าง 0 ถึง m-1

สรุปคือ inverse การคูณ modulo m ของ a คือ b นั้นเอง

Littlebox.png

ต่อไปเราจะพิสูจน์ Claim 1.


Proof of Claim1: สมมุติให้มีจำนวนเต็ม ที่

ที่
จะได้
หรือ

นั้นคือมีจำนวนเต็ม k ที่

จาก gcd(a,m ) =1 จะได้ว่า m ต้องหาร (i -j) ลงตัว แต่ (i-j) มีค่าได้ตั้งแต่ 1 ถึง m-1 (ไม่เป็น 0 เนื่องจาก ซึ่งน้อยกว่า m ซึ่งเป็นไปไม่ได้

Littlebox.png

แนวทางการ 
Proof by Contradiction
จะพิสูจน์ (P) สมมุติ 
:หรือ

(=>)
ต้องการพิสูจน์ a มี inverse modulo m แล้ว gcd(a,m) = 1


Proof(Indirect):

ไม่มี mutiplicative inverse modulo m

ให้
หรือ
พิจารณา
ซึ่งจะเห็นว่า ผลลบของเทอมที่คูณ x เป็นจำนวนเต็ม คูณอยู่กับ x ซึ่งมากกว่าหนึ่งจึงเป็นไปไม่ได้ที่ เท่ากับ 1
Littlebox.png

ยูคลิด gcd alg. ในลักษณะ recursive function

funtion GCD(a,b)

if b|a then return a
else return GCD(b,a mod b)

การวิเคราะห์

การวิเคราะห์ความถูกต้อง

นิยาม
gcd(a,b) คือค่าหารรวมมากของ a กับ b

assume a > b without lose in generality


Proof by induction on (a,b):
GCD(a,b) = gcd(a,b)
base case:
ถ้า b=0 , GCD(a,b) =a = gcd(a,b)
inductive step:
ถ้า b > 0 และ a > b แล้ว
claim 2: gcd(b,a mod b ) = gcd(a,b)
ถ้า y|a และ y|b แล้ว y|a mod b
หรือ

เนื่องจาก จะได้ว่า และ ด้วย

ดังนั้น


hypothesis สมมุติที่ GCD(x,y)=gcd(x,y) สำหรับทุกๆ x < a , y <= b
นั้นคือ GCD(b,a mod b) = gcd(b, a mod b)
ดังนั้น GCD(a,b) = GCD(b, a mod b)
= gcd(b ,a mod b)
= gcd(a,b) ตาม claim 2

Proof by Induction :พิสูจน์ว่า P(i) จริงสำหรับจำนวนเต็มบวก i ทุกๆตัว ## P(1) จริง [base case] [basis] ## ถ้า P(i) แล้ว P(i+1) จริงสำหรับทุกๆ i >=1 ; P(i) จริงจาก P(j) j < i [inductive step] ถ้า (a)&(b) จะสรุปได้ว่า P(i) จริงสำหรับทุกจำนวนเต็ม i

การวิเคราะห์เวลาการทำงาน

การหา multiplicative inverse mudulo m

lemma: สำหรับจำนวนเต็ม a และ b มีจำนวนเต็ม x,y ที่ ax + by = gcd(a,b) ; x และ y หาได้จาก extended gcd alg. >จะหา \inv a (mod m) เมื่อ gcd(a,m) = 1

จะมี x,y ที่ ax + my = 1

mod m

(ax + my) mod m = 1
ax mod m = 1

เลือก mod p เมื่อ p เป็นจำนวนเฉพาะ จะได้ทุกๅ a e {1,2,3,...,p-1} , gcd(a,p) = 1 ; [GFp(Galois Field)]

การกระจายความลับ (Secret Sharing)

ถ้า polynomial f มี degree d เราสามารถให้ จะมี polynomial degree d เพียงตัวเดียวที่ผ่าน ทุกจุดดังกล่าว และ polynomial ดังกล่าวหาได้

ต้องการ key M ให้กลุ่มคน n คน ให้ทุกๆกลุ่มคน < k คน ไม่ทราบข้อมูลเกี่ยวกับ key เลย

กลุ่มคน k คนหา key ได้

หา prime p > key และ p - 1 > n เลือก จากเซต { 1, 2, ... , p-1}

ให้ ak-1 ไม่เท่ากับ 0

ให้ เราจะเลือกจุด ที่ไม่ซ้ำกัรและไม่เท่ากับ 0 ให้ กับคนที่ i