ผลต่างระหว่างรุ่นของ "Week4 Machine Learning"
ไปยังการนำทาง
ไปยังการค้นหา
Parinya (คุย | มีส่วนร่วม) |
|||
(ไม่แสดง 2 รุ่นระหว่างกลางโดยผู้ใช้ 2 คน) | |||
แถว 19: | แถว 19: | ||
== Reproducing kernel Hilbert spaces == | == Reproducing kernel Hilbert spaces == | ||
− | Let <math>\mathcal{H}</math> be a Hilbert space consisting of functions on <math>\mathcal{X}</math>. A function <math>K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}</math> is called a reproducing kernel if | + | Let <math>\mathcal{H}</math> be a Hilbert space consisting of functions on <math>\mathcal{X}</math>. A function <math>K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}</math> is called a reproducing kernel for<math> \mathcal{H}</math> if |
* For all y, <math>K_y = K(\cdot, y)</math> belongs to <math>\mathcal{H}</math> | * For all y, <math>K_y = K(\cdot, y)</math> belongs to <math>\mathcal{H}</math> | ||
*'' (Reproducing property):'' For all y, for all <math>f \in \mathcal{H}</math>, | *'' (Reproducing property):'' For all y, for all <math>f \in \mathcal{H}</math>, | ||
แถว 25: | แถว 25: | ||
Note that, in this case, dot-product is defined in a natural way, i.e. | Note that, in this case, dot-product is defined in a natural way, i.e. | ||
:<math> <f,g> = \int_{X} f(x) \bar{g}(x) </math> | :<math> <f,g> = \int_{X} f(x) \bar{g}(x) </math> | ||
+ | |||
+ | == Properties of r.k. Hilbert spaces == | ||
+ | |||
+ | * It is known that if a r.k. exists for a given Hilbert space, then it is unique. The proof is two-line | ||
+ | |||
+ | * (Existence of K): | ||
+ | |||
+ | == Eigenvector systems == | ||
+ | |||
+ | |||
+ | == Example 1: finite domain == | ||
+ | We show a motivating example when <math>\mathcal{X}</math> is finite. |
รุ่นแก้ไขปัจจุบันเมื่อ 03:26, 20 เมษายน 2550
Let's first review some linear algebra concepts.
เนื้อหา
Hilbert spaces
Recall some basic definitions:
Def: An inner product is is a bilinear form on a pair of vectors satisfying
- and <v,v>
Note that every inner product space is a normed linear space with the norm
And with this norm, the inner product space forms a metric.
Def: A metric space is complete if every cauchy sequence converges to an element in the space
Def: A Hilbert space is a complete inner product space
Reproducing kernel Hilbert spaces
Let be a Hilbert space consisting of functions on . A function is called a reproducing kernel for if
- For all y, belongs to
- (Reproducing property): For all y, for all ,
Note that, in this case, dot-product is defined in a natural way, i.e.
Properties of r.k. Hilbert spaces
- It is known that if a r.k. exists for a given Hilbert space, then it is unique. The proof is two-line
- (Existence of K):
Eigenvector systems
Example 1: finite domain
We show a motivating example when is finite.