ผลต่างระหว่างรุ่นของ "Probstat/notes/sample means and sample variances"
ไปยังการนำทาง
ไปยังการค้นหา
Jittat (คุย | มีส่วนร่วม) (หน้าที่ถูกสร้างด้วย '== Sample == Consider a certain distribution. The mean <math>\mu</math> of the distribution is the expected value of a random variable...') |
Jittat (คุย | มีส่วนร่วม) |
||
แถว 35: | แถว 35: | ||
=== Sample variances and sample standard deviations === | === Sample variances and sample standard deviations === | ||
+ | |||
+ | === Confidence intervals === | ||
+ | Recall that the random variable <math>\bar{X}</math> is a normal random variable with mean <math>\mu</math> and s.d. <math>\sigma/\sqrt{n}</math> Therefore, | ||
+ | |||
+ | <center> | ||
+ | <math>\sqrt{n}(\bar{X}-\mu)/\sigma</math> | ||
+ | </center> | ||
+ | |||
+ | will be a unit normal random variable. | ||
+ | |||
+ | We consider how <math>\bar{X}</math> deviates from the true mean <math>\mu</math>. |
รุ่นแก้ไขเมื่อ 02:06, 6 พฤศจิกายน 2557
เนื้อหา
Sample
Consider a certain distribution. The mean of the distribution is the expected value of a random variable sample from the distribution. I.e.,
.
Also recall that the variance of the distribution is
.
And finally, the standard deviation is .
Suppose that you take samples independently from this distribution. (Note that are random variables.
Sample means
The statistic
is called a sample mean. Since are random variables, the mean is also a random variable.
Thus, we can compute:
and
Sample variances and sample standard deviations
Confidence intervals
Recall that the random variable is a normal random variable with mean and s.d. Therefore,
will be a unit normal random variable.
We consider how deviates from the true mean .