ผลต่างระหว่างรุ่นของ "Probstat/notes/sample means and sample variances"
ไปยังการนำทาง
ไปยังการค้นหา
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
แถว 61: | แถว 61: | ||
\mathrm{E}[S^2] &=& \mathrm{E}\left[\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}\right] \\ | \mathrm{E}[S^2] &=& \mathrm{E}\left[\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}\right] \\ | ||
&=& \mathrm{E}\left[\frac{\sum_{i=1}^n (X_i^2 -2X_i\bar{X} + \bar{X}^2}{n-1}\right] \\ | &=& \mathrm{E}\left[\frac{\sum_{i=1}^n (X_i^2 -2X_i\bar{X} + \bar{X}^2}{n-1}\right] \\ | ||
− | &=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2] - \sum_{i=1}^n E[X_i\bar{X}] + \sum_{i=1}^n E[\bar{X}^2] \right) | + | &=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2] - 2\cdot\sum_{i=1}^n E[X_i\bar{X}] + \sum_{i=1}^n E[\bar{X}^2] \right) \\ |
+ | &=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2] - (2/n)\cdot\sum_{i=1}^n E[X_i\sum_{j=1}^n X_j] + \sum_{i=1}^n E\left[\left(\sum_{j=1}^n X_j\right)^2\right] \right) \\ | ||
\end{array} | \end{array} | ||
</math> | </math> |
รุ่นแก้ไขเมื่อ 21:17, 2 ธันวาคม 2557
- This is part of probstat
Consider a certain distribution. The mean of the distribution is the expected value of a random variable sample from the distribution. I.e.,
.
Also recall that the variance of the distribution is
.
And finally, the standard deviation is .
เนื้อหา
Sample Statistics
Suppose that you take samples independently from this distribution. (Note that are random variables.)
Sample means
The statistic
is called a sample mean. Since are random variables, the mean is also a random variable.
We hope that approximates well. We can compute:
and
Sample variances and sample standard deviations
We can also use the sample to estimate .
The statistic
is called a sample variance. The sample standard deviation is .
Note that the denominator is instead of .
We can show that .