ผลต่างระหว่างรุ่นของ "Probstat/notes/sample means and sample variances"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 62: แถว 62:
 
&=& \mathrm{E}\left[\frac{\sum_{i=1}^n (X_i^2 -2X_i\bar{X} + \bar{X}^2}{n-1}\right] \\
 
&=& \mathrm{E}\left[\frac{\sum_{i=1}^n (X_i^2 -2X_i\bar{X} + \bar{X}^2}{n-1}\right] \\
 
&=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2] - 2\cdot\sum_{i=1}^n E[X_i\bar{X}] + \sum_{i=1}^n E[\bar{X}^2] \right) \\
 
&=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2] - 2\cdot\sum_{i=1}^n E[X_i\bar{X}] + \sum_{i=1}^n E[\bar{X}^2] \right) \\
&=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2] - (2/n)\cdot\sum_{i=1}^n E[X_i\sum_{j=1}^n X_j] + \sum_{i=1}^n E\left[\left(\sum_{j=1}^n X_j\right)^2\right] \right) \\
+
&=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2]  
 +
- (2/n)\cdot\sum_{i=1}^n E\left[X_i\left(\sum_{j=1}^n X_j\right)\right]  
 +
+ \sum_{i=1}^n E\left[\left((1/n)\sum_{j=1}^n X_j\right)^2\right] \right) \\
 +
&=& \frac{1}{n-1}\left( \sum_{i=1}^n E[X_i^2]
 +
- (2/n)\cdot\sum_{i=1}^n \sum_{j=1}^n E\left[X_i\cdot X_j\right]
 +
+ n\cdot E\left[\left((1/n)\sum_{j=1}^n X_j\right)^2\right] \right) \\
 
\end{array}
 
\end{array}
 
</math>
 
</math>

รุ่นแก้ไขเมื่อ 21:20, 2 ธันวาคม 2557

This is part of probstat

Consider a certain distribution. The mean of the distribution is the expected value of a random variable sample from the distribution. I.e.,

.

Also recall that the variance of the distribution is

.

And finally, the standard deviation is .

Sample Statistics

Suppose that you take samples independently from this distribution. (Note that are random variables.)

Sample means

The statistic

is called a sample mean. Since are random variables, the mean is also a random variable.

We hope that approximates well. We can compute:

and

Sample variances and sample standard deviations

We can also use the sample to estimate .

The statistic

is called a sample variance. The sample standard deviation is .

Note that the denominator is instead of .

We can show that .

Distribution of sample means