ผลต่างระหว่างรุ่นของ "Probstat/notes/sample means and sample variances"
ไปยังการนำทาง
ไปยังการค้นหา
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) (qq) |
||
แถว 71: | แถว 71: | ||
- (2/n)\cdot\sum_{i=1}^n \sum_{j=1}^n E\left[X_i\cdot X_j\right] | - (2/n)\cdot\sum_{i=1}^n \sum_{j=1}^n E\left[X_i\cdot X_j\right] | ||
+ (1/n)\cdot E\left[\left(\sum_{j=1}^n X_j\right)^2\right] \right) \\ | + (1/n)\cdot E\left[\left(\sum_{j=1}^n X_j\right)^2\right] \right) \\ | ||
+ | \end{array} | ||
+ | </math> | ||
+ | </center> | ||
+ | |||
+ | Let's deal with the middle term here: | ||
+ | |||
+ | <center> | ||
+ | <math> | ||
+ | \begin{array}{rcl} | ||
+ | \sum_{i=1}^n \sum_{j=1}^n E\left[X_i\cdot X_j\right] &=& \sum_{i=1}^n E[X_iX_i] + \sum_{i=1}^n\sum_{j\neq i} E[X_iX_j]\\ | ||
+ | &=& \sum_{i=1}^n E[X_i^2] + \sum_{i=1}^n\sum_{j\neq i} E[X_i]E[X_j]\\ | ||
+ | &=& n E[X^2] + n(n-1)E[X]E[X]\\ | ||
+ | &=& n E[X^2] + n(n-1)\mu^2\\ | ||
\end{array} | \end{array} | ||
</math> | </math> |
รุ่นแก้ไขเมื่อ 21:31, 2 ธันวาคม 2557
- This is part of probstat
Consider a certain distribution. The mean of the distribution is the expected value of a random variable sample from the distribution. I.e.,
.
Also recall that the variance of the distribution is
.
And finally, the standard deviation is .
เนื้อหา
Sample Statistics
Suppose that you take samples independently from this distribution. (Note that are random variables.)
Sample means
The statistic
is called a sample mean. Since are random variables, the mean is also a random variable.
We hope that approximates well. We can compute:
and
Sample variances and sample standard deviations
We can also use the sample to estimate .
The statistic
is called a sample variance. The sample standard deviation is .
Note that the denominator is instead of .
We can show that .
Let's deal with the middle term here: