ผลต่างระหว่างรุ่นของ "Computational complexity/hw1"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 1: แถว 1:
 
การบ้าน 1 มี xx ข้อ
 
การบ้าน 1 มี xx ข้อ
  
1. (AB-1.7) Define a ''two-dimensional'' Turing machine to be a TM where each of its tapes is an infinite grid (and the machine can move not only <tt>L</tt>eft and <tt>R</tt>ight, but also <tt>U</tt>p and <tt>D</tt>own).  Show that for every (time-constructible) <math>T:N\rightarrow N</math> and every Boolean function <math>f</math>, if <math>f</math> can be computed in time <math>T(n)</math> using a two-dimensional  TM then <math>f\in DTIME(T(n)^2)</math>.
+
1. (AB-1.7) Define a ''two-dimensional'' Turing machine to be a TM where each of its tapes is an infinite grid (and the machine can move not only <tt>L</tt>eft and <tt>R</tt>ight, but also <tt>U</tt>p and <tt>D</tt>own).  Show that for every (time-constructible) <math>T:{\mathbb N}\rightarrow {\mathbb N}</math> and every Boolean function <math>f</math>, if <math>f</math> can be computed in time <math>T(n)</math> using a two-dimensional  TM then <math>f\in DTIME(T(n)^2)</math>.
  
 
2. (AB-2.17, 1st half) In the '''Exactly One 3SAT''' problem, we are given a 3CNF formula <math>\phi</math> and need to decide if there exists a satisfying assignment <math>u</math> for <math>\phi</math> such that every clause of <math>\phi</math> has exactly one True literal.  Prove that '''Exactly One 3SAT''' is '''NP'''-complete.   
 
2. (AB-2.17, 1st half) In the '''Exactly One 3SAT''' problem, we are given a 3CNF formula <math>\phi</math> and need to decide if there exists a satisfying assignment <math>u</math> for <math>\phi</math> such that every clause of <math>\phi</math> has exactly one True literal.  Prove that '''Exactly One 3SAT''' is '''NP'''-complete.   
แถว 8: แถว 8:
  
 
3. (AB-2.23) Prove that <math>\mathbf{P}\subseteq \mathbf{NP}\cap\mathbf{coNP}</math>
 
3. (AB-2.23) Prove that <math>\mathbf{P}\subseteq \mathbf{NP}\cap\mathbf{coNP}</math>
 +
 +
4. (AB-6.8) A language <math>L\subseteq\{0,1\}^*</math> is sparse if there is a polynomial <math>p</math> such that <math>|L\cup\{0,1\}^n|\leq p(n)</math> for every <math>n\in{\mathbb N}</math>.  Show that every sparse language is in <math>\mathbf{P}_\mathrm{/poly}</math>.

รุ่นแก้ไขเมื่อ 15:25, 17 มีนาคม 2564

การบ้าน 1 มี xx ข้อ

1. (AB-1.7) Define a two-dimensional Turing machine to be a TM where each of its tapes is an infinite grid (and the machine can move not only Left and Right, but also Up and Down). Show that for every (time-constructible) and every Boolean function , if can be computed in time using a two-dimensional TM then .

2. (AB-2.17, 1st half) In the Exactly One 3SAT problem, we are given a 3CNF formula and need to decide if there exists a satisfying assignment for such that every clause of has exactly one True literal. Prove that Exactly One 3SAT is NP-complete.

Hint: Replace each occurrence of a literal in a clause by a new variable with auxiliary variables ensuring of is TRUE, then can be either TRUE or FALSE, but if is FALSE, then must be FALSE.

3. (AB-2.23) Prove that

4. (AB-6.8) A language is sparse if there is a polynomial such that for every . Show that every sparse language is in .