ผลต่างระหว่างรุ่นของ "Computational complexity/hw2"
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
(ไม่แสดง 2 รุ่นระหว่างกลางโดยผู้ใช้คนเดียวกัน) | |||
แถว 1: | แถว 1: | ||
− | การบ้าน 2 มี | + | การบ้าน 2 มี 9 ข้อ (optional 2 ข้อ) |
1. (AB-4.5) Prove that <math>\mathrm{2SAT}</math> is in <math>\mathbf{NL}</math>. | 1. (AB-4.5) Prove that <math>\mathrm{2SAT}</math> is in <math>\mathbf{NL}</math>. | ||
แถว 11: | แถว 11: | ||
5. (AB-9.5) Show that if <math>\mathbf{P} = \mathbf{NP}</math>, then one-way functions do not exist. | 5. (AB-9.5) Show that if <math>\mathbf{P} = \mathbf{NP}</math>, then one-way functions do not exist. | ||
− | 6. Consider random variables <math>Z_1,Z_2,\ldots,Z_n</math> and let random variable <math>Z=\sum_{i=1}^n Z_i</math>. We know that when <math>Z_i</math>'s are independent, <math>\mathrm{Var}(Z)=\sum_{i=1}^n \mathrm{Var}(Z_i)</math>. Show that the equality still holds when <math>Z_i</math>'s are only pair-wise independent. | + | 6. (AB-9.11) Show that if <math>f</math> is a one-way permutation then so is <math>f^k</math> (which is <math>f</math> applied <math>k</math> times), where <math>k=n^c</math> for some fixed <math>c>0</math>. |
+ | |||
+ | 7. Consider random variables <math>Z_1,Z_2,\ldots,Z_n</math> and let random variable <math>Z=\sum_{i=1}^n Z_i</math>. We know that when <math>Z_i</math>'s are independent, <math>\mathrm{Var}(Z)=\sum_{i=1}^n \mathrm{Var}(Z_i)</math>. Show that the equality still holds when <math>Z_i</math>'s are only pair-wise independent. | ||
: ''Hint:'' Use the definition of variance. | : ''Hint:'' Use the definition of variance. | ||
− | + | 8. (optional) (AB-3.2) Show that <math>\mathrm{SPACE}(n)\neq \mathbf{NP}</math>. (Note that we do not know if either class is contained in the other.) | |
− | : ''Hint:'' See first | + | : ''Hint:'' See first answers in [https://mathoverflow.net/questions/56265/np-not-equal-to-spacen/56266 mathoverflow] (and more hints at [https://cs.stackexchange.com/questions/93434/show-that-np-is-not-equal-to-spacen here]). Also this [https://www.scottaaronson.com/blog/?p=392 blog post on Sidesplitting proofs]. |
− | + | 9. (optional) (AB-8.1-c) Let <math>\mathbf{IP}'</math> denote the class obtained by changing the constant 2/3 in the completeness part of the definition of <math>\mathbf{IP}</math> to 1. Prove that <math>\mathbf{IP}' = \mathbf{IP}</math>. | |
: ''Hint:'' Use <math>\mathbf{IP} = \mathbf{PSPACE}</math>. | : ''Hint:'' Use <math>\mathbf{IP} = \mathbf{PSPACE}</math>. |
รุ่นแก้ไขปัจจุบันเมื่อ 01:15, 15 เมษายน 2564
การบ้าน 2 มี 9 ข้อ (optional 2 ข้อ)
1. (AB-4.5) Prove that is in .
2. (AB-5.3) Show that if is polynomial-time reducible to , then .
3. (AB-8.1-b) Prove that .
4. (AB-8.1-d) Let denote the class obtained by changing the constant 1/3 in the soundness part of the definition of to 0. Prove that .
5. (AB-9.5) Show that if , then one-way functions do not exist.
6. (AB-9.11) Show that if is a one-way permutation then so is (which is applied times), where for some fixed .
7. Consider random variables and let random variable . We know that when 's are independent, . Show that the equality still holds when 's are only pair-wise independent.
- Hint: Use the definition of variance.
8. (optional) (AB-3.2) Show that . (Note that we do not know if either class is contained in the other.)
- Hint: See first answers in mathoverflow (and more hints at here). Also this blog post on Sidesplitting proofs.
9. (optional) (AB-8.1-c) Let denote the class obtained by changing the constant 2/3 in the completeness part of the definition of to 1. Prove that .
- Hint: Use .
- Links: การบ้าน 1