ผลต่างระหว่างรุ่นของ "418531 ภาคต้น 2552/โจทย์ปัญหาการพิสูจน์ II"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 8: แถว 8:
 
# จงแสดงว่า 6 หาร <math>n^3 - n</math> ลงตัวเมื่อ n เป็นจำนวนเต็มที่ไม่เป็นลบ
 
# จงแสดงว่า 6 หาร <math>n^3 - n</math> ลงตัวเมื่อ n เป็นจำนวนเต็มที่ไม่เป็นลบ
 
# ให้ <math>A_1, A_2, A_3, \ldots, A_n</math> และ <math>B_1, B_2, B_n, \ldots, B_n</math> โดยที่ <math>A_i \subseteq B_i</math> สำหรับ <math>i = 1, 2, 3, \ldots, n</math> จงพิสูจน์ว่า <math>\bigcap_{i=1}^n A_i \subseteq \bigcap_{i=1}^n B_n</math>
 
# ให้ <math>A_1, A_2, A_3, \ldots, A_n</math> และ <math>B_1, B_2, B_n, \ldots, B_n</math> โดยที่ <math>A_i \subseteq B_i</math> สำหรับ <math>i = 1, 2, 3, \ldots, n</math> จงพิสูจน์ว่า <math>\bigcap_{i=1}^n A_i \subseteq \bigcap_{i=1}^n B_n</math>
# จงแสดงว่า <math>1 \cdot 2^0 + 2 \cdot 2^1 + 3 \cdot 2^2 + \cdots + n \cdot 2^{n-1} = (n-1)2^n + 1</math>
+
# จงแสดงว่า <math>1 \cdot 2^0 + 2 \cdot 2^1 + 3 \cdot 2^2 + \cdots + n \cdot 2^{n-1} = (n-1)2^n + 1</math> สำหรับจำนวนเต็ม n ที่มีค่าไม่เป็นลบ
 +
# จงแสดงว่า 21 หาร <math>4^{n+1} + 5^{2n-1}</math> ลงตัวเมื่อ n เป็นจำนวนเต็มบวก
 +
# จงแสดงว่า <math>1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1)</math>
 +
 
 +
== ข้อ 2 ==
 +
จงแสดงว่าถ้าเราวาดเส้นตรง n เส้นลงบนระนาบ โดยที่เส้นตรงนี้ไม่ีเส้นตรงสองเส้นใดๆ ขนานกัน และไม่มีเส้นตรงสามเส้นใดๆ ตัดกันที่จุดจุดเดียวกันแล้ว เส้นตรงทั้ง n แล้วเหล่านี้จะแบ่งระนาบออกเป็น <math>\frac{n^2 + n + 2}{2}</math> ส่วน
 +
 
 +
== ข้อ 3 ==
 +
ถ้า <math>a_1, a_2, a_3, \ldots, a_n</math> เป็นจำนวนจริงบวก จงแสดงว่า '''ค่าเฉลี่ยเลขคณิต''' <math>\frac{a_1 + a_2 + a_3 + \cdots + a_n}{n}</math> มีค่ามากกว่าหรือเท่ากับ '''ค่าเฉลี่ยเรขาคณิต''' <math>\sqrt[n]{a_1a_2a_3\ldots a_n}</math> เสมอ
 +
 
 +
== ข้อ 4 ==
 +
จงเขียนนิยามแบบเวียนบังเกิดของลำดับ <math>\{ a_n \}</math> โดยที่ <math>a_n = 1, 2, 3, \ldots</math> เมื่อ
 +
# <math>a_n = 4n-2</math>
 +
# <math>a_n = n(n+1)</math>
 +
# <math>a_n = 1 + (-1)^n</math>
 +
# <math>a_n = n^2</math>
 +
 
 +
== ข้อ 5 ==
 +
ให้ <math>f_n</math> เป็นจำนวนฟิโบนักชีตัวที่ n
 +
# จงแสดงว่า <math>f_1^2 + f_2^2 + f_3^2 + \ldots + f_n^2 = f_nf_{n+1}</math> เมื่อ n เป็นจำนวนเต็มบวก
 +
# จงแสดงว่า <math>f_1 + f_3 + \cdots + f_{2n-1} = f_{2n}</math> เมื่อ n เป็นจำนวนเต็มบวก
 +
# จงแสดงว่า <math>f_{n+1}f_{n-1} = f_n^2 = (-1)^n</math> เมื่อ n เป็นจำนวนเต็มบวก
 +
 
 +
== ข้อ 6 ==
 +
# จงให้นิยามแบบเวียนบังเกิดของฟังก์ชัน <math>\max(a_1, a_2, \ldots, a_n)</math> และ <math>\min(a_1, a_2, \ldots, a_n)</math> ซึ่งมีค่าเท่ากับค่าที่มากที่สุดและค่าที่น้อยที่สุดของจำนวนจริง <math>a_1, a_2, \ldots, a_n</math> ตามลำดับ
 +
# จงพิสูจน์ว่า <math>\max(-a_1, -a_2, \ldots, -a_n) = -\min(a_1, a_2, \ldots, a_n)</math>
 +
# จงพิูสูจน์ว่า <math>\max(a_1 + b_1, a_2 + b_2, \ldots, a_n+b_n) \leq \max(a_1, a_2, \ldots, a_n) + \max(b_1, b_2, \ldots, b_n)</math>
 +
# จงพิูสูจน์ว่า <math>\min(a_1 + b_1, a_2 + b_2, \ldots, a_n+b_n) \geq \min(a_1, a_2, \ldots, a_n) + \min(b_1, b_2, \ldots, b_n)</math>

รุ่นแก้ไขเมื่อ 17:56, 27 มิถุนายน 2552

ข้อ 1

จงใช้การอุปนัยทางคณิตศาสตร์แก้ปัญหาต่อไปนี้

  1. จงหาสูตรอย่างง่ายของ และพิสูจน์ว่ามันถูกต้อง
  2. จงหาสูตรอย่างง่ายของ และพิสูจน์ว่ามันถูกต้อง
  3. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มที่ไม่เป็นลบ
  4. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 4
  5. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 1
  6. จงแสดงว่า 6 หาร ลงตัวเมื่อ n เป็นจำนวนเต็มที่ไม่เป็นลบ
  7. ให้ และ โดยที่ สำหรับ จงพิสูจน์ว่า
  8. จงแสดงว่า สำหรับจำนวนเต็ม n ที่มีค่าไม่เป็นลบ
  9. จงแสดงว่า 21 หาร ลงตัวเมื่อ n เป็นจำนวนเต็มบวก
  10. จงแสดงว่า

ข้อ 2

จงแสดงว่าถ้าเราวาดเส้นตรง n เส้นลงบนระนาบ โดยที่เส้นตรงนี้ไม่ีเส้นตรงสองเส้นใดๆ ขนานกัน และไม่มีเส้นตรงสามเส้นใดๆ ตัดกันที่จุดจุดเดียวกันแล้ว เส้นตรงทั้ง n แล้วเหล่านี้จะแบ่งระนาบออกเป็น ส่วน

ข้อ 3

ถ้า เป็นจำนวนจริงบวก จงแสดงว่า ค่าเฉลี่ยเลขคณิต มีค่ามากกว่าหรือเท่ากับ ค่าเฉลี่ยเรขาคณิต เสมอ

ข้อ 4

จงเขียนนิยามแบบเวียนบังเกิดของลำดับ โดยที่ เมื่อ

ข้อ 5

ให้ เป็นจำนวนฟิโบนักชีตัวที่ n

  1. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวก
  2. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวก
  3. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวก

ข้อ 6

  1. จงให้นิยามแบบเวียนบังเกิดของฟังก์ชัน และ ซึ่งมีค่าเท่ากับค่าที่มากที่สุดและค่าที่น้อยที่สุดของจำนวนจริง ตามลำดับ
  2. จงพิสูจน์ว่า
  3. จงพิูสูจน์ว่า
  4. จงพิูสูจน์ว่า